Темы | Предыдущий пункт | Следующий пункт | Литература

Home page Home page Лекция 6.2.

Дифференциальные уравнения высших порядков


6.2.4. Линейные однородные уравнения второго порядка


Рассмотрим линейное однородное уравнение второго порядка, т.е. уравнение и установим некоторые свойства его решений.

Свойство 1
Если является решением линейного однородного уравнения, то C, где C - произвольная постоянная, является решением того же уравнения.
Доказательство.
Подставляя в левую часть рассматриваемого уравнения C, получим: ,
но , т.к. является решением исходного уравнения.
Следовательно,

и справедливость указанного свойства доказана.

Свойство 2
Сумма двух решений линейного однородного уравнения является решением того же уравнения.
Доказательство.
Пусть и являются решениями рассматриваемого уравнения, тогда
и .
Подставляя теперь + в рассматриваемое уравнение будем иметь:
, т.е. + есть решение исходного уравнения.
Из доказанных свойств следует, что, зная два частных решения и линейного однородного уравнения второго порядка, мы можем получить решение , зависящее от двух произвольных постоянных, т.е. от такого количества постоянных, какое должно содержать общее решение уравнение второго порядка. Но будет ли это решение общим, т.е. можно ли путем выбора произвольных постоянных и удовлетворить произвольно заданным начальным условиям?
При ответе на этот вопрос будет использовано понятие линейной независимости функций, которую можно определить следующим образом.

Две функции и называются линейно независимыми на некотором интервале, если их отношение на этом интервале не является постоянным, т.е. если
.
В противном случае функции называются линейно зависимыми .
Иными словами, две функции и называются линейно зависимыми на некотором интервале, если на всем интервале.

Пример

Примеры

1. Функции y1 = e x и y2 = e - x линейно независимы при всех значениях x , т.к.
.
2. Функции y1 = e x и y2 = 5 e x линейно зависимы, т.к.
.

Теорема 1.

Если функции и линейно зависимы на некотором интервале, то определитель , называемый определителем Вронского данных функций, тождественно равен нулю на этом интервале.

Доказательство.

Если
,
где , то и .
Следовательно,
.
Теорема доказана.

Замечание.
Определитель Вронского, фигурирующий в рассмотренной теореме, обычно обозначается буквой W или символами .
Если функции и являются решениями линейного однородного уравнения второго порядка, то для них справедлива следующая обратная и притом более сильная теорема.

Теорема 2.

Если определитель Вронского, составленный для решений и линейного однородного уравнения второго порядка, обращается в ноль хотя бы в одной точке, то эти решения линейно зависимы.

Доказательство.

Пусть определитель Вронского обращается в ноль в точке , т.е. =0,
и пусть и .
Рассмотрим линейную однородную систему

относительно неизвестных и .
Определитель этой системы совпадает со значением определителя Вронского при
x= , т.е. совпадает с , и, следовательно, равен нулю. Поэтому система имеет ненулевое решение и ( и не равны нулю). Используя эти значения и , рассмотрим функцию . Эта функция является решением того же уравнения, что и функции и . Кроме того, эта функция удовлетворяет нулевым начальным условиям: , т.к. и .
С другой стороны, очевидно, что решением уравнения , удовлетворяющим нулевым начальным условиям, является функция y =0.
В силу единственности решения, имеем: . Откуда следует, что
,
т.е. функции и линейно зависимы. Теорема доказана.

Следствия.

1. Если определитель Вронского, фигурирующий в теоремах, равен нулю при каком-нибудь значении x=, то он равен нулю при любом значении x из рассматриваемого интервала.

2. Если решения и линейно независимы, то определитель Вронского не обращается в ноль ни в одной точке рассматриваемого интервала.

3. Если определитель Вронского отличен от нуля хотя бы в одной точке, то решения и линейно независимы.

Теорема 3.

Если и - два линейно независимых решения однородного уравнения второго порядка , то функция , где и - произвольные постоянные, является общим решением этого уравнения.

Доказательство.

Как известно, функция является решением рассматриваемого уравнения при любых значениях и . Докажем теперь, что каковы бы ни были начальные условия
и ,
можно так подобрать значения произвольных постоянных и , чтобы соответствующее частное решение удовлетворяло заданным начальным условиям.
Подставляя начальные условия в равенства, получим систему уравнений
.
Из этой системы можно определить и , т.к. определитель этой системы

есть определитель Вронского при x= и, следовательно, не равен нулю (в силу линейной независимости решений и ).
; .
Частное решение при полученных значениях и удовлетворяет заданным начальным условиям. Таким образом, теорема доказана.

Пример

Примеры

Пример 1.

Общим решением уравнения является решение .
Действительно,
.

Следовательно, функции sinx и cosx линейно независимы. В этом можно убедиться, рассмотрев отношение этих функций:

.

Пример 2.

Решение y = C1 e x + C2 e - x уравнения является общим, т.к.
.

Пример 3.

Уравнение
,
коэффициенты которого
и
непрерывны на любом интервале, не содержащем точки x = 0, допускает частные решения

(легко проверить подстановкой). Следовательно, его общее решение имеет вид:
.

Замечание

Мы установили, что общее решение линейного однородного уравнения второго порядка можно получить зная два каких-либо линейно независимых частных решения этого уравнения. Однако, не существует общих методов для нахождения таких частных решений в конечном виде для уравнений с переменными коэффициентами. Для уравнений с постоянными коэффициентами такой метод существует и будет рассмотрен нами позднее.


Top of page

Home page Home page