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Дифференциальные уравнения 

 

§1. Дифференциальные уравнения первого порядка 

 

1.1. Основные понятия 

 

Дифференциальным уравнением первого порядка называется уравне-

ние, связывающее независимую переменную x, искомую функцию 

y = f(x) и ее производную y′ или дифференциалы dy и dx. 

Символически дифференциальное уравнение первого порядка можно 

написать так: 

𝐹(𝑥, 𝑦, 𝑦′) = 0, или 𝐹 (𝑥, 𝑦,
𝑑𝑦

𝑑𝑥
) = 0. 

Неизвестной является функция 𝑦, входящая под знак производной (или 

дифференциала). 

Уравнение первого порядка может быть записано также в дифференци-

альном виде: 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦 = 0.  

Если искомая функция 𝑦 = 𝑓(𝑥) есть функция одной независимой пере-

менной, то дифференциальное уравнение называется обыкновенным. 

Решением дифференциального уравнения называется всякая функция 

𝑦 = 𝑓(𝑥), обращающая это уравнение в тождество. 

Решение 𝐹(𝑥, 𝑦) = 0, заданное в неявном виде, называется интегралом 

дифференциального уравнения. 

График дифференциального уравнения называется интегральной кривой. 

Общим решением дифференциального уравнения первого порядка назы-

вается функция 𝑦 = 𝜑(𝑥, 𝐶), зависящая от х и произвольной независимой по-

стоянной С, обращающая это уравнение в тождество. 

Общее решение, заданное в неявном виде  𝐹(𝑥, 𝑦, 𝐶) = 0 называется об-

щим интегралом. 

Частным решением дифференциального уравнения называется решение, 

которое получается из общего, если придать определенное значение произ-

вольной постоянной С = С0. 

Частным интегралом называется интеграл, полученный из общего, если 

придать определенное значение произвольной постоянной. 

Условие y = y0 при x = x0 называют начальным условием и записывают в 

виде 𝑦(𝑥0) = 𝑦0 или 𝑦|𝑥=𝑥0 = 𝑦0. 

Задача отыскания частного решения ДУ, удовлетворяющего заданному 

начальному условию, называется задачей Коши. 

 

1.2. Уравнения с разделяющимися переменными 

 

Наиболее простым ДУ первого порядка является уравнение вида  

𝑃(𝑥)𝑑𝑥 = 𝑄(𝑦)𝑑𝑦. (1) 

Такое уравнение называется уравнением с разделенными переменными. 

Проинтегрировав это уравнение, получим: 
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∫𝑃(𝑥)𝑑𝑥 = ∫𝑄(𝑦)𝑑𝑦 – общий интеграл ДУ.  

Более общий случай описывают уравнения с разделяющимися перемен-

ными, которые имеют вид:  

𝑃1(𝑥) ⋅ 𝑄1(𝑦)𝑑𝑥 + 𝑃2(𝑥) ⋅ 𝑄2(𝑦)𝑑𝑦 = 0. (2) 

Уравнение (2) сводится к уравнению (1) путем деления его на 𝑃2(𝑥) ⋅
𝑄1(𝑦) ≠ 0. Получаем: 

𝑃1(𝑥)

𝑃2(𝑥)
⋅ 𝑑𝑥 +

𝑄2(𝑦)

𝑄1(𝑦)
𝑑𝑦 = 0 ⇒  

𝑃1(𝑥)

𝑃2(𝑥)
⋅ 𝑑𝑥 = −

𝑄2(𝑦)

𝑄1(𝑦)
𝑑𝑦. 

Замечание: при проведении деления дифференциального уравнения на 

𝑃2(𝑥)𝑄1(𝑦) могут быть потеряны некоторые решения. Поэтому следует отдель-

но решить уравнение 𝑃2(𝑥)𝑄1(𝑦) = 0 и установить те решения, которые не мо-

гут быть получены из общего решения, – особые решения.  

Уравнение 

𝑦 ′ = 𝑓1(𝑥) ⋅ 𝑓2(𝑦). 
также сводится к уравнению с разделенными переменными. Для этого доста-

точно положить 𝑦 ′ =
𝑑𝑦

𝑑𝑥
: 

𝑑𝑦

𝑑𝑥
= 𝑓1(𝑥) ⋅ 𝑓2(𝑦)  ⇒  

𝑑𝑦

𝑓2(𝑦)
= 𝑓1(𝑥)𝑑𝑥. 

 

Задание 1. Найдите общий интеграл дифференциального уравнения 
(𝑦 + 𝑥𝑦)𝑑𝑥 + (𝑥 − 𝑥𝑦)𝑑𝑦 = 0. 

Решение. Вынесем общие множители в каждом слагаемом: 
(𝑦 + 𝑥𝑦)𝑑𝑥 + (𝑥 − 𝑥𝑦)𝑑𝑦 = 0 ⇒  𝑦(1 + 𝑥)𝑑𝑥 = 𝑥(𝑦 − 1)𝑑𝑦. 

Разделим обе части уравнения на xy: 
1 + 𝑥

𝑥
𝑑𝑥 =

𝑦 − 1

𝑦
𝑑𝑦 ⇒  ∫ (1 +

1

𝑥
)𝑑𝑥 = ∫(1 −

1

𝑦
)𝑑𝑦 ⇒ 

𝑥 + 𝑙𝑛|𝑥| = 𝑦 − 𝑙𝑛|𝑦| + 𝐶 – общий интеграл дифференциального уравнения. 

Решения уравнения xy = 0: x = 0 и y = 0 – не входят в общий интеграл, 

значит, это особое решение. 

 

Задание 2. Найдите общий интеграл дифференциального уравнения 

𝑦′ =
1+𝑦2

(2𝑥−6)𝑦
 или  

𝑑𝑦

𝑑𝑥
=

1+𝑦2

(2𝑥−6)𝑦
. 

Решение. Разделим переменные 
𝑦

1+𝑦2
𝑑𝑦 =

𝑑𝑥

2𝑥−6
 и интегрируем 

∫
𝑦

1+𝑦2
𝑑𝑦 =

1

2
∫
𝑑𝑥

𝑥−3
. В результате нахождения интегралов получим: 

1

2
𝑙𝑛|1 +

𝑦2| =
1

2
𝑙𝑛|𝑥 − 3| + 𝐶1. Это выражение можно записать в иной форме: 

1

2
𝑙𝑛|1 +

𝑦2| =
1

2
𝑙𝑛|𝑥 − 3| +

1

2
𝑙𝑛 𝐶, т. к. всякое число можно представить в виде лога-

рифма другого. 

Таким образом, общий интеграл данного уравнения будет иметь вид: 

1 + 𝑦2 = 𝐶(𝑥 − 3). 
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Задание 3. Скорость движения материальной точки массой m направлена 

по линии действия постоянной силы F. Движение материальной точки проис-

ходит прямолинейно. Найдите скорость движения материальной точки. 

Решение. Из второго закона Ньютона получим дифференциальное урав-

нение движения точки 

𝑚
𝑑𝑣

𝑑𝑡
= 𝐹. 

Разделяем переменные 𝑑𝑣 =
𝐹

𝑚
𝑑𝑡 и интегрируем ∫𝑑𝑣 = ∫

𝐹

𝑚
𝑑𝑡. В резуль-

тате получим 𝑣 =
𝐹

𝑚
𝑡 + 𝐶. 

 

Задание 4. Тело массой 10 кг свободно падает под действием силы тяже-

сти. Найдите скорость тела через две секунду после начала падения. 

Решение. На тело действует сила тяжести F = mg, где g – ускорение сво-

бодного падения.  

Из второго закона Ньютона получим дифференциальное уравнение дви-

жения точки 

𝑚
𝑑𝑣

𝑑𝑡
= 𝑚𝑔. 

Разделяем переменные 𝑑𝑣 = 𝑔𝑑𝑡 и интегрируем ∫𝑑𝑣 = ∫𝑔𝑑𝑡. В резуль-

тате получим 𝑣 = 𝑔𝑡 + 𝐶. 

Поскольку в начальный момент времени скорость равна нулю, то C = 0. 

Через две секунды скорость тела будет равна v = 2g ≈ 19,6 м/с. 

 

Задание 5. Найдите частное решение дифференциального уравнения 

𝑦 ′ = 4𝑥3 + 6𝑥2 + 1, удовлетворяющее начальному условию y(1) = 2. 

Решение. Интегрируя обе части уравнения, получим общее решение 

𝑦 = 𝑥4 + 2𝑥3 + 𝑥 + 𝐶. 
Для нахождения частного решения положим в общем решении x = 1, 

y = 2 и найдем C: 

2 = 1 + 2 + 1 + 𝐶   ⇒     𝐶 =  −2. 
Частное решение имеет вид 

𝑦 = 𝑥4 + 2𝑥3 + 𝑥 − 2. 
 

Задание 6. Найдите уравнение кривой, зная, что отрезок, который отсека-

ется касательной в произвольной точке кривой на оси ординат, равен утроенной 

ординате точки касания. 

Решение. Уравнение касательной в произвольной точке кривой A(x; y) 

имеет вид 

𝑌 − 𝑦 = 𝑦′(𝑋 − 𝑥). 
Для нахождения дифференциального уравнения положим в уравнение ка-

сательной X = 0, Y = 3y: 

2𝑦 = −𝑥𝑦′. 
Разделяем переменные 
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𝑥
𝑑𝑦

𝑑𝑥
= −2𝑦   ⇒   

𝑑𝑦

𝑦
= −2

𝑑𝑥

𝑥
. 

Интегрируем обе части 

𝑙𝑛𝑦 = −2𝑙𝑛𝑥 + 𝐶1. 
Пусть произвольная постоянная C1 = lnC, тогда искомое уравнение кри-

вой имеет вид 

𝑦 =
𝐶

𝑥2
. 

 

Задание 7. Ракета с начальной массой m0 движется прямолинейно под 

действием отдачи от истечения непрерывной струи газов, выбрасываемых из 

ракеты. Скорость u0 истечения газов (относительно ракеты) постоянна по вели-

чине и направлена в сторону, противоположную начальной скорости ракеты v0. 

Найти закон движения ракеты, пренебрегая силой тяжести и сопротивлением 

воздуха (задача Циолковского о прямолинейном движении ракеты в пустоте). 

Решение. Рассмотрим случай 𝑢0 > 𝑣 + ∆𝑣, где 𝑣 - скорость движения ра-

кеты в моменты времени t. Запишем закон сохранения импульса системы в мо-

менты времени t и t + ∆t (∆𝑚 < 0) 
𝑚𝑣 = (𝑚 + ∆𝑚)(𝑣 + ∆𝑣) + ∆𝑚(𝑢0 − 𝑣 + ∆𝑣). 

После упрощения уравнения получим: 

𝑚∆𝑣 = −𝑢0∆𝑚. 
Аналогичный результат получим при 𝑢0 < 𝑣 + ∆𝑣 

Предположим, что масса, как и скорость, непрерывная и дифференцируе-

мая функция времени. Перейдя к пределу при Δt → 0, получим 

𝑚𝑑𝑣 = −𝑢0𝑑𝑚. 
Разделяем переменные 

𝑑𝑣 = −𝑢0
𝑑𝑚

𝑚
. 

Интегрируем обе части 

𝑣 = −𝑢0𝑙𝑛𝑚 + 𝐶. 
Произвольную постоянную C находим из начального условия 𝑣 = 𝑣0, 

𝑚 = 𝑚0 при t = 0: 

𝐶 = 𝑣0 + 𝑢0𝑙𝑛𝑚0. 
С учетом этого имеем 

𝑣 = 𝑢0𝑙𝑛
𝑚0
𝑚
+ 𝑣0. 

Эта формула носит имя Циолковского. 

 

Задание 8. Число распадов атомных ядер за интервал времени ∆t в произ-

вольном радиоактивном веществе пропорционально числу N имеющихся в об-

разце радиоактивных атомов данного тип. Определить закон радиоактивного 

распада. 

Решение. Введем постоянную распада λ, которая характеризует вероят-

ность радиоактивного распада атома за единицу времени. Число радиоактивных 

атомов убывает со временем, поэтому ∆𝑁 < 0. 

https://ru.wikipedia.org/wiki/%D0%90%D1%82%D0%BE%D0%BC
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Количество распавшихся атомом за время ∆t равно 

∆𝑁 = −𝜆𝑁∆𝑡. 
Предположим, что количество нераспавшихся атомом непрерывная и 

дифференцируемая функция времени. Перейдя к пределу при Δt → 0, получим 
𝑑𝑁

𝑁
= −𝜆𝑑𝑡. 

Интегрируем обе части 

𝑙𝑛𝑁 = −𝜆𝑡 + 𝑙𝑛𝐶  ⇒  𝑁 = 𝐶𝑒−𝜆𝑡 . 
Произвольную постоянную C находим из начального условия 𝑁 = 𝑁0 при 

t = 0: 

𝐶 = 𝑁0. 
С учетом этого имеем 

 𝑁 = 𝑁0𝑒
−𝜆𝑡 . 

 

Задание 9. Круглый цилиндрический бак с вертикальной осью, радиусом 

R и высотой H наполнен водой. На дне бака имеется небольшое круглое отвер-

стие радиусом r, через которое вода вытекает. Определить время, за которое 

уровень воды понизится от начального положения H до высоты h. Определить 

время полного опорожнения бака, если H = 1,2 м, R = 0,5 м, 

r = 0,01 м. 

Решение. Пусть в некоторый момент времени t высота жидкости в баке 

равна h. Количество жидкости dV, вытекшее из сосуда за промежуток времени 

dt, составит 

𝑑𝑉 = 𝜋𝑟2𝑣(ℎ)𝑑𝑡. 
Согласно закону Торичелли, скорость истечения жидкости через малое 

отверстие определяется 

𝑣 = 𝜇√2𝑔ℎ, 
где g – ускорение свободного падения, 

μ – коэффициент расхода, зависящий от вязкости жидкости и формы от-

верстия. В нашем примере μ = 0,62. 

Вследствие утечке воды ее уровень h в баке понизится на величину dh  

(dh < 0), следовательно, 𝑑𝑉 = −𝜋𝑅2𝑑ℎ. 
Приравнивая оба выражения для dV, составляем дифференциальное урав-

нение 

𝜋𝑟2𝜇√2𝑔ℎ𝑑𝑡 = −𝜋𝑅2𝑑ℎ  ⇒  𝑑𝑡 = −
𝑅2

𝑟2𝜇√2𝑔
∙
𝑑ℎ

√ℎ
. 

Интегрируем обе части 

𝑡 = −
𝑅2

𝑟2𝜇√2𝑔
∙ ∫
𝑑ℎ

√ℎ

ℎ

𝐻

  ⇒ 𝑡 =
2𝑅2

𝑟2𝜇√2𝑔
 ∙ (√𝐻 − √ℎ). 

Для частого случая, при H = 1,2 м, h = 0, R = 0,5 м, r = 0,01 м, получим 

𝑡 =
2 ∙ 0,52

0,012 ∙ 0,62 ∙ √2 ∙ 9,81
 ∙ √1,2 ≈ 1 572 с ≈ 26 мин. 



8 

 

Задание 10. Пусть в начальный момент тело с постоянной теплоемкостью 

имеет температуру T0. Температура окружающей среды постоянна и равна Tc 

(Tc < T0). Найдите закон охлаждения тела, принимая, что тепло, отданное телом 

за бесконечно малый промежуток времени dt, пропорционально разности тем-

ператур тела и окружающей среды, а также длительности промежутка времени 

(закон Ньютона). 

Решение. Воспользуемся законом Ньютона по теплопередаче. Скорость 

теплопотерь тела пропорциональна разнице температур между телом и окру-

жающей средой: 
𝑑𝑇

𝑑𝑡
= −𝜆(𝑇 − 𝑇𝑐), 

где λ – коэффициент теплопередачи, 

dT < 0. 

Разделяем переменные и интегрируем 
𝑑𝑇

𝑇 − 𝑇𝑐
= −𝜆𝑑𝑡  ⇒  l𝑛(𝑇 − 𝑇𝑐) = −𝜆𝑡 + 𝑙𝑛𝐶 ⇒   𝑇 = 𝑇𝑐 + 𝐶𝑒

−𝜆𝑡 . 

Произвольную постоянную C находим из начального условия 𝑇 = 𝑇0 при 

t = 0: 

𝐶 = 𝑇0 − 𝑇𝑐 . 
С учетом этого имеем 

𝑇 = 𝑇𝑐 + (𝑇0 − 𝑇𝑐)𝑒
−𝜆𝑡 

 

Задание 11. Поглощение светового потока тонким слоем воды пропорци-

онально толщине слоя и потоку, падающему на его поверхность. Зная, что при 

прохождении через слой 1 м поглощается 5% первоначального светового пото-

ка F0, определить, какой процент его дойдет до глубины 3 м. 

Решение. Обозначим через F световой поток, падающий на поверхность 

на глубине h. При прохождении через слой воды толщиной dh поглощенный 

световой поток dF (dF < 0) равен 

𝑑𝐹 = −𝜆𝐹𝑑ℎ, 
где λ – коэффициент пропорциональности. 

Разделяем переменные и интегрируем 
𝑑𝐹

𝐹
= −𝜆𝑑ℎ  ⇒  l𝑛𝐹 = −𝜆ℎ + 𝑙𝑛𝐶  ⇒   𝐹 = 𝐶𝑒−𝜆ℎ . 

Произвольную постоянную C находим из начального условия 𝐹 = 𝐹0 при 

t = 0: 𝐶 = 𝐹0. 
С учетом этого имеем  

𝐹 = 𝐹0𝑒
−𝜆ℎ . 

По условию задания при h = 1 имеем F = 0, 95F0, поэтому 

0,95𝐹0 = 𝐹0𝑒
−𝜆   ⇒   𝑒−𝜆 = 0,95. 

До глубины 3 м дойдет световой поток, равный 

𝐹 = 𝐹0 ∙ 0,95
3 ≈ 0,8574𝐹0, 

Что составляет 85,74% падающего светового потока. 
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Задание 12. В баке находится 400 л морской воды, содержащей 3,5 % со-

ли (35 г/л). В бак непрерывно подается пресная вода со скоростью 3 л/мин. По-

лученная смесь перемешивается и вытекает со скоростью 3 л/мин. Какой станет 

концентрация соли через 2 часа? 

Решение. Пусть в произвольный момент времени t в баке содержится m(t) 

количества соли. За небольшой промежуток времени dt из бака выльется 
3𝑚(𝑡)𝑑𝑡

400
 

граммов соли. Если в течение этого промежутка времени концентрацию соли 

считать неизменной, то изменение количества соли dm (dm < 0) в баке составит 

𝑑𝑚 = −
3𝑚𝑑𝑡

400
. 

Разделяем переменные и интегрируем 
𝑑𝑚

𝑚
= −

3𝑑𝑡

400
  ⇒   𝑙𝑛𝑚 = −

3𝑡

400
+ 𝑙𝑛𝐶 ⇒   𝑚 = 𝐶𝑒−

3𝑡
400. 

Произвольную постоянную C находим из начального условия 

𝑚0 = 35 ∙ 400 = 14000 при t = 0: 𝐶 = 14000. 
Через 2 часа концентрация соли ρ составит 

𝜌 =
14000

400
𝑒−
3∙120
400 ≈ 14,2 г/л. 

Задание 13. Кредит в триста тысяч рублей взят на пять лет под 20 % годо-

вых. Какую разовую сумму необходимо выплатить кредитору в конце срока, 

если проценты начисляются: а) каждый год; б) непрерывно? 

Решение. а) Воспользуемся формулой сложных процентов 

𝑆 = 𝑆0 (1 +
𝑖

100
)
𝑛

⇒ 𝑆 = 300 000 ∙ 1,25 = 746 496. 

б) Прирост задолженности dS за время dt (время измеряется в годах) состав-

ляет 

𝑑𝑆 = 0,2𝑆𝑑𝑡. 
Разделяем переменные и интегрируем 

𝑑𝑆

𝑆
= 0,2𝑑𝑡  ⇒   𝑙𝑛𝑆 = 0,2𝑡 + 𝑙𝑛𝐶 ⇒   𝑆 = 𝐶𝑒0,2𝑡 . 

Произвольную постоянную C находим из начального условия 

𝑆0 = 300 000 при t = 0: 𝐶 = 300 000. 
Через пять лет задолженность составит 

𝑆 = 300 000 ∙ 𝑒0,2∙5 ≈ 815 484,55. 
 

Задание 14. Комбинат строительных материалов выпускает и продает 

1000 кирпичей в сутки стоимостью 25 рублей за один кирпич. В течение месяца 

2% вырученных денег от стоимости реализованного товара направляется на 

расширение производства. Каждые 2000 рублей, вложенные в расширение про-

изводства, приводит к увеличению выпуска на один кирпич в день. Сколько 

кирпичей в день будет производить комбинат к концу месяца? 

Решение. Обозначим через S(t) количество произведенного кирпича в 

момент времени t (время измеряется в сутках). Выручка от реализации произ-
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веденных кирпичей составит 25S рублей. На расширение производства будет 

направлено 25S·0,02 = 0,5S рублей. Это приведет к увеличению производства 

на величину 0,5S/2000, т. е. 

𝑑𝑆 = 0,00025𝑆𝑑𝑡. 
Разделяем переменные и интегрируем 
𝑑𝑆

𝑆
= 0,00025𝑑𝑡  ⇒   𝑙𝑛𝑆 = 0,00025𝑡 + 𝑙𝑛𝐶 ⇒   𝑆 = 𝐶𝑒0,00025𝑡 . 

Произвольную постоянную C находим из начального условия 

𝑆0 = 1 000 при t = 0: 𝐶 = 1 000. 
Через 30 дней комбинат будет производить 

𝑆 = 1 000 ∙ 𝑒0,00025∙30 ≈ 1 007 

кирпичей в сутки. 

 

Задание 15. Выберите несколько вариантов ответа. Из данных диффе-

ренциальных уравнений уравнениями с разделяющимися переменными явля-

ются … 

1) 𝑦3
𝑑𝑦

𝑑𝑥
− 𝑦3𝑡𝑔𝑥 = 0

 
2) 
𝑑𝑦

𝑑𝑥
= 𝑙𝑛

𝑦

𝑥
+
𝑦2

𝑥2
 

3) 
𝑑𝑦

𝑑𝑥
− 2𝑥2 = 𝑥2𝑒2𝑦 4) 

𝑑𝑦

𝑑𝑥
= 2

𝑦

𝑥
+
𝑦3

𝑥3
+ 3 

Решение. Дифференциальное уравнение вида 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥) ⋅ 𝑔(𝑦) относится 

к типу уравнений с разделяющимися переменными. К такому виду можно при-

вести уравнения 1) и 3). 

Запишем уравнение 1) в виде 𝑦3
𝑑𝑦

𝑑𝑥
= 𝑦3𝑡𝑔𝑥 и, разделив обе части урав-

нения на 𝑦3, получим 
𝑑𝑦

𝑑𝑥
= 𝑡𝑔𝑥. Последнее означает, что уравнение 

1) – уравнение с разделяющимися переменными, где 𝑓(𝑥) = 𝑡𝑔𝑥, а 𝑔(𝑦) = 1, а 

значит, и исходное уравнение является уравнением с разделяющимися пере-

менными. 

Перепишем уравнение 3) в виде 
𝑑𝑦

𝑑𝑥
= 2𝑥2 + 𝑥2𝑒2𝑦 и, разложив выражение 

в правой части на множители, получим уравнение указанного выше вида  
𝑑𝑦

𝑑𝑥
=

𝑥2(2 + 𝑒2𝑦). Здесь 𝑓(𝑥) = 𝑥2, а 𝑔(𝑦) = 2 + 𝑒2𝑦. 

Уравнения 2) и 4) нельзя привести к указанному типу. 

Ответ: 1) и 3). 

 

1.3. Однородные уравнения первого порядка 

 

Рассмотрим сначала понятие однородной функции двух переменных. 

Функция двух переменных 𝑓(𝑥, 𝑦) называется однородной функцией изме-

рения (порядка) 𝒏, если при любом 𝑡 справедливо тождество 

𝑓(𝑡𝑥, 𝑡𝑦) = 𝑡𝑛𝑓(𝑥, 𝑦). 
Например, функция 𝑓(𝑥, 𝑦) = 𝑥2 − 3𝑥𝑦 + 5𝑦2 есть однородная функция вто-

рого измерения, т. к. 

𝑓(𝑡𝑥, 𝑡𝑦) = (𝑡𝑥)2 − 3𝑡𝑥𝑡𝑦 + 5(𝑡𝑦)2 = 𝑡2(𝑥2 − 3𝑥𝑦 + 5𝑦2) = 𝑡2𝑓(𝑥, 𝑦). 
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С понятием однородной функции связано понятие однородного дифференци-

ального уравнения. 

Уравнение 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦 = 0 называется однородным дифферен-

циальным уравнением первого порядка, если функции 𝑃(𝑥, 𝑦) и 𝑄(𝑥, 𝑦) яв-

ляются однородными функциями одного и того же измерения. 

Однородные дифференциальные уравнения решаются введением новой пе-

ременной 𝑈 по формуле 𝑈 =
𝑦

𝑥
 или 𝑦 = 𝑈𝑥, при этом 𝑑𝑦 = 𝑈𝑑𝑥 + 𝑥𝑑𝑈. После 

подстановки данное однородное уравнение будет являться уравнением с разде-

ляющимися переменными 𝑥 и 𝑈; из него определяется 𝑈, а из формулы 𝑦 = 𝑈𝑥 

искомая функция 𝑦. 

 

Задание 16.  Найдите решение уравнения(𝑦2 − 3𝑥2)𝑑𝑥 + 2𝑥𝑦𝑑𝑦 = 0, если 

𝑦 = 0 при 𝑥 = 0. 

Решение. Здесь 𝑃(𝑥, 𝑦) = 𝑦2 − 3𝑥2 и 𝑄(𝑥, 𝑦) = 2𝑥𝑦 - однородные функции 

второго порядка. Разделим обе части на 𝑥2 и применим подстановку 𝑦 = 𝑈𝑥, 

𝑈 =
𝑦

𝑥
 при этом 𝑑𝑦 = 𝑈𝑑𝑥 + 𝑥𝑑𝑈. 

Получим: 

(𝑈2 − 3)𝑑𝑥 + 2𝑈(𝑈𝑑𝑥 + 𝑥𝑑𝑈) = 0 ⇒  3(𝑈2 − 1)𝑑𝑥 + 2𝑈𝑥𝑑𝑈 = 0. 
Разделяем переменные и интегрируем: 
3

𝑥
𝑑𝑥 = −

2𝑈𝑑𝑈

𝑈2 − 1
 ⇒  3 𝑙𝑛|𝑥| = − 𝑙𝑛|𝑈2 − 1| + 𝑙𝑛 |𝐶|   ⇒  𝑥3(𝑈2 − 1) = 𝐶. 

Так как 𝑈 =
𝑦

𝑥
, то 𝑥3 (

𝑦2

𝑥2
− 1) = 𝐶,   𝑥(𝑦2 − 𝑥2) = 𝐶 - общий интеграл. Ис-

пользуя начальные условия 𝑦(0) = 0 имеем 0(02 − 02) = 𝐶,    𝐶 = 0. Тогда 

𝑥(𝑦2 − 𝑥2) = 0 и 𝑦 = ±𝑥 - частное решение данного уравнения. 

 

1.4. Линейные уравнения первого порядка 

 

Уравнение 𝑦′ + 𝑝𝑦 = 𝑞, где 𝑝 = 𝑝(𝑥) и 𝑞 = 𝑞(𝑥) - заданные непрерывные 

функции, называется линейным дифференциальным уравнением первого 

порядка. 

Если функция 𝑞(𝑥), стоящая в правой части уравнения, тождественно 

равна нулю, т. е. 𝑞(𝑥) = 0, то уравнение называется линейным однородным, в 

противном случае – линейным неоднородным. 

Таким образом, 𝑦′ + 𝑝𝑦 = 0 - линейное однородное уравнение, а 

𝑦 ′ + 𝑝𝑦 = 𝑞 - линейное неоднородное уравнение. 

Рассмотрим три метода интегрирования линейных уравнений. 

I метод. Для решения уравнения применяют подстановку 𝑦 = 𝑈𝑉, причем 

функцию 𝑈 = 𝑈(𝑥) считают новой неизвестной функцией, а функцию 𝑉 = 𝑉(𝑥) 

подчиняют условию: 
𝑑𝑉

𝑑𝑥
+ 𝑝𝑉 = 0. Данная подстановка приводит к двум урав-

нениям с разделяющимися переменными относительно 𝑈 и 𝑉. Произведение 

полученных функций даст общее решение линейного уравнения: 𝑦 = 𝑈𝑉. 
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Задание 17. Найдите общее решение уравнения 𝑦′ −
𝑦

𝑥
= 𝑥. 

Решение. Здесь 𝑝 = −
1

𝑥
,   𝑞 = 𝑥. Имеем:  𝑦 = 𝑈𝑉,   𝑦′ = 𝑈′𝑉 + 𝑉′𝑈, 

𝑈′𝑉 + 𝑉′𝑈 −
𝑈𝑉

𝑥
= 𝑥  ⇒   𝑈′𝑉 + 𝑈 (𝑉′ −

𝑉

𝑥
) = 𝑥  ⇒ 

{𝑉
′ −
𝑉

𝑥
= 0,

  𝑈′𝑉 = 𝑥.

 

Для первого уравнения находим частное решение (без C): 
𝑑𝑉

𝑑𝑥
=
𝑉

𝑥
  ⇒  

𝑑𝑉

𝑉
=
𝑑𝑥

𝑥
  ⇒  𝑙𝑛𝑉 = 𝑙𝑛𝑥  ⇒ 𝑉 = 𝑥. 

Подставляем во второе уравнение системы найденное частное решение 

однородного уравнения 
𝑑𝑈

𝑑𝑥
𝑥 = 𝑥  ⇒  𝑑𝑈 = 𝑑𝑥 ⇒  𝑈 = 𝑥 + 𝐶. 

Поскольку 𝑦 = 𝑈𝑉, то 𝑦 = 𝑥(𝑥 + 𝐶) - общее решение линейного уравне-

ния. 

 

II метод (Метод вариации произвольной постоянной). 

В линейном однородном уравнении  𝑦′ + 𝑝𝑦 = 0 переменные разделяют-

ся и его общее решение, которое мы обозначим через 𝑌, легко находится. Затем 

находят общее решение неоднородного линейного уравнения 𝑦′ + 𝑝𝑦 = 𝑞, счи-

тая, что оно имеет такую же форму, как и общее решение соответствующего 

однородного уравнения 𝑌, но где 𝐶 есть не постоянная величина, а неизвестная 

функция от 𝑥, т. е. считая, что 𝑦 = 𝐶(𝑥). 
Полученное общее решение состоит из двух слагаемых: общего решения 

соответствующего однородного уравнения и частного решения неоднородного 

уравнения. 

 

Задание 18. Найдите общее решение уравнения 𝑦′ −
2𝑥𝑦

1+𝑥2
= 1 + 𝑥2. 

Решение. Интегрируем соответствующее однородное уравнение: 
𝑑𝑦

𝑑𝑥
−
2𝑥𝑦

1 + 𝑥2
= 0 ⇒  

𝑑𝑦

𝑦
=
2𝑥𝑑𝑥

1 + 𝑥2
 ⇒ 

 𝑙𝑛 𝑦 = 𝑙𝑛|1 + 𝑥2| + 𝑙𝑛 𝐶  ⇒  𝑦 = 𝐶(1 + 𝑥2). 
Считаем 𝐶 функцией 𝑥: 

𝑦 = 𝐶(𝑥)(1 + 𝑥2),   𝑦 ′ = 𝐶 ′(𝑥)(1 + 𝑥2) + 𝐶(𝑥) ⋅ 2𝑥. 
Подставляем в исходное уравнение: 

𝐶 ′(𝑥)(1 + 𝑥2) + 𝐶(𝑥) ⋅ 2𝑥 −
2𝑥𝐶(𝑥)(1 + 𝑥2)

1 + 𝑥2
= 1 + 𝑥2, 

𝐶 ′(𝑥)(1 + 𝑥2) = 1 + 𝑥2,   
𝑑𝐶

𝑑𝑥
= 1,   𝐶 = 𝑥 + 𝐶1,   𝑦 = (𝑥 + 𝐶1)(1 + 𝑥

2), 

𝑦 = 𝐶1(1 + 𝑥
2) + 𝑥 + 𝑥3 - общее решение линейного уравнения. 

 

III метод. Используем готовое решение в общем виде 
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𝑦 = 𝑒−∫𝑝𝑑𝑥 (∫𝑞𝑒∫𝑝𝑑𝑥𝑑𝑥 + 𝐶). 

Оба интеграла находятся без C. 

 

Задание 19. Найдите общее решение уравнения 𝑦 ′ − 3𝑦 = 𝑥. 

Решение. Здесь 𝑝 = −3, 𝑞 = 𝑥. Найдем первый интеграл без С: 

∫𝑝𝑑𝑥 = ∫(−3)𝑑𝑥 = −3𝑥. 

Найдем второй интеграл без С, используя формулу интегрирования по 

частям: 

∫𝑞𝑒∫𝑝𝑑𝑥𝑑𝑥 = ∫𝑥𝑒−3𝑥𝑑𝑥 = |
𝑢 = 𝑥, 𝑒−3𝑥𝑑𝑥 = 𝑑𝑣,

𝑑𝑢 = 𝑑𝑥, −
1

3
𝑒−3𝑥 = 𝑣

| = 

= −
1

3
𝑥𝑒−3𝑥 +

1

3
∫𝑒−3𝑥𝑑𝑥 = −

1

3
𝑥𝑒−3𝑥 −

1

9
𝑒−3𝑥 . 

Подставляем в формулу найденные частные интегралы: 

𝑦 = 𝑒−∫𝑝𝑑𝑥 (∫𝑞𝑒∫𝑝𝑑𝑥𝑑𝑥 + 𝐶) = 

= 𝑒3𝑥 (−
1

3
𝑥𝑒−3𝑥 −

1

9
𝑒−3𝑥 + 𝐶) = 𝐶𝑒3𝑥 −

1

3
𝑥 −

1

9
. 

 

Задание 20. Сила тока i в цепи с сопротивлением R, самоиндукции L и 

постоянной электродвижущей силой E удовлетворяет дифференциальному 

уравнению 

𝐿𝑖′ + 𝑅𝑖 = 𝐸. 
Найдите решение это дифференциального уравнения. 

Решение. 

1 способ. Введем новую переменную 𝑖 = 𝑈𝑉,   𝑖′ = 𝑈′𝑉 + 𝑉′𝑈, тогда 

𝐿𝑈′𝑉 + 𝐿𝑉′𝑈 + 𝑅𝑈𝑉 = 𝐸 ⇒ {
𝐿𝑉′ + 𝑅𝑉 = 0,
𝐿𝑈′𝑉 = 𝐸.

 

Находим частное решение первого уравнения системы: 

𝐿
𝑑𝑉

𝑑𝑡
= −𝑅𝑉  ⇒  

𝑑𝑉

𝑉
= −

𝑅𝑑𝑡

𝐿
  ⇒  𝑙𝑛𝑉 = −

𝑅

𝐿
𝑡  ⇒ 𝑉 = 𝑒−

𝑅
𝐿
𝑡. 

Подставляем во второе уравнение системы найденное частное решение 

𝐿𝑒−
𝑅
𝐿
𝑡 ∙
𝑑𝑈

𝑑𝑡
= 𝐸  ⇒  𝑑𝑈 =

𝐸

𝐿
𝑒
𝑅
𝐿
𝑡𝑑𝑡 ⇒  𝑈 =

𝐸

𝑅
𝑒
𝑅
𝐿
𝑡 + 𝐶. 

Поскольку 𝑖 = 𝑈𝑉, то 𝑖 =
𝐸

𝑅
+ 𝐶𝑒−

𝑅

𝐿
𝑡
 - общее решение линейного уравне-

ния. 

2 способ. Представим это уравнение в виде уравнения с разделенными 

переменными 

𝐿
𝑑𝑖

𝑑𝑡
= 𝐸 − 𝑅𝑖 ⇒  

𝑑𝑖

𝐸 − 𝑅𝑖
=
𝑑𝑡

𝐿
. 

Интегрируем обе части 
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−
1

𝑅
∫
𝑑(𝐸 − 𝑅𝑖)

𝐸 − 𝑅𝑖
= ∫

𝑑𝑡

𝐿
 ⇒ 𝑙𝑛(𝐸 − 𝑅𝑖) = −

𝑅

𝐿
𝑡 + 𝑙𝑛𝐶1  ⇒ 𝑖 =

𝐸

𝑅
+ 𝐶𝑒−

𝑅
𝐿
𝑡, 

где 𝐶 = −
𝐶1

𝑅
. 

 

1.5. Уравнение Бернулли 

 

Уравнением Бернулли называется уравнение вида 𝑦′ + 𝑝𝑦 = 𝑞𝑦𝑛 (здесь 

𝑛 ≠ 0 и 𝑛 ≠ 1). 

Это уравнение решается с помощью замены 𝑦 = 𝑈𝑉, или приводится к 

линейному с помощью подстановки 𝑦−𝑛+1 = 𝑧. Решая линейное уравнение от-

носительно функции 𝑧 и подставляя вместо 𝑧 выражение 𝑦−𝑛+1, получим об-

щий интеграл уравнения Бернулли. 

 

Задание 21. Найдите общее решение уравнения 𝑦 ′ + 𝑦 = 𝑦2. 

Решение. Введем новую переменную 𝑦 = 𝑈𝑉,   𝑦′ = 𝑈′𝑉 + 𝑉′𝑈. Тогда 

𝑈′𝑉 + 𝑉′𝑈 + 𝑈𝑉 = (𝑈𝑉)2 ⇒ {
𝑉′ + 𝑉 = 0,

𝑈′ = 𝑈2𝑉.
 

Находим частное решение первого уравнения системы: 
𝑑𝑉

𝑑𝑥
= −𝑉  ⇒  

𝑑𝑉

𝑉
= −𝑑𝑥  ⇒  𝑙𝑛𝑉 = −𝑥  ⇒ 𝑉 = 𝑒−𝑥 . 

Подставляем во второе уравнение системы найденное частное решение 
𝑑𝑈

𝑑𝑥
= 𝑈2𝑒−𝑥   ⇒  

𝑑𝑈

𝑈2
= 𝑒−𝑥𝑑𝑥  ⇒  −

1

𝑈
= −𝑒−𝑥 − 𝐶 ⇒  𝑈 =

1

𝑒−𝑥 + 𝐶
. 

Поскольку 𝑦 = 𝑈𝑉, то 𝑦 =
1

𝐶𝑒𝑥+1
 - общее решение уравнения Бернулли. 

 

1.6. Уравнения в полных дифференциалах 

 

Если левая часть уравнения 

𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦 = 0 

представляет собой полный дифференциал некоторой функции u(x, y), т. е. 

𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦 = 𝑑𝑢(𝑥, 𝑦), 
то это уравнение называется уравнением в полных дифференциалах. 

Общий интеграл дифференциального уравнения равен 

𝑢(𝑥, 𝑦) = 𝐶. 
Необходимое условие полного дифференциала. Для того чтобы дифферен-

циальное выражение 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦 являлось в области D полным диф-

ференциалом некоторой функции 𝑢 = 𝑢(𝑥, 𝑦), необходимо, чтобы в этой обла-

сти выполнялось условие 
𝜕𝑃

𝜕𝑦
=
𝜕𝑄

𝜕𝑥
,  ∀(𝑥, 𝑦) ∈ 𝐷. 

Общий интеграл находится из системы 
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{
𝑢(𝑥, 𝑦) = ∫𝑃(𝑥, 𝑦 = 𝑐𝑜𝑛𝑠𝑡)𝑑𝑥 + 𝜑(𝑦),

𝑢(𝑥, 𝑦) = ∫𝑄(𝑥 = 𝑐𝑜𝑛𝑠𝑡, 𝑦)𝑑𝑦 + 𝜓(𝑥).
 

 

Задание 22. Найдите общий интеграл дифференциального уравнения 
(2𝑥 + 5𝑦)𝑑𝑥 + (5𝑥 − 4𝑦)𝑑𝑦 = 0. 

Решение. В нашем случае P(x, y) = 2x + 5y, Q(x, y) = 5x – 4y, 
𝑑𝑃

𝑑𝑦
= 5, 

𝑑𝑄

𝑑𝑥
=

5, необходимое условие 
𝑑𝑃

𝑑𝑦
=
𝑑𝑄

𝑑𝑥
 выполнено. 

Найдем первый интеграл 

𝑢(𝑥, 𝑦) = ∫𝑃(𝑥, 𝑦)𝑑𝑥 + 𝜑(𝑦) = ∫(2𝑥 + 5𝑦)𝑑𝑥 + 𝜑(𝑦) = 𝑥2 + 5𝑥𝑦 + 𝜑(𝑦). 

Найдем второй интеграл 

𝑢(𝑥, 𝑦) = ∫𝑄(𝑥, 𝑦)𝑑𝑦 + 𝜓(𝑥) = ∫(5𝑥 − 4𝑦)𝑑𝑦 + 𝜓(𝑥) = 

= 5𝑥𝑦 − 2𝑦2 + 𝜓(𝑥) 
Сравнивая правые части полученных выражений, получим общий инте-

грал дифференциального уравнения 

𝑥2 + 5𝑥𝑦 − 2𝑦2 = 𝐶. 
 

Если условие 
𝑑𝑃

𝑑𝑦
=
𝑑𝑄

𝑑𝑥
 не выполнено, то дифференциальное 

𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦 = 0 

не является уравнением в полных дифференциалах. Однако это уравнение 

можно превратить в уравнение в полных дифференциалах умножением на под-

ходящую функцию μ(x, y). Такая функция носит название интегрирующего 

множителя. 

Частый случай нахождения интегрирующего множителя: 

- если  

𝑑𝑃

𝑑𝑦
−
𝑑𝑄

𝑑𝑥

𝑄
= 𝑓(𝑥), то 𝑙𝑛𝜇 = ∫𝑓(𝑥)𝑑𝑥 ; 

- если  

𝑑𝑃

𝑑𝑦
−
𝑑𝑄

𝑑𝑥

𝑃
= 𝑔(𝑦), то 𝑙𝑛𝜇 = −∫𝑔(𝑦)𝑑𝑦. 

 

Задание 23. Найдите общий интеграл дифференциального уравнения 

(𝑥 + 𝑦)𝑑𝑥 + (𝑥2 − 𝑥)𝑑𝑦 = 0. 

Решение. В нашем случае P(x, y) = 𝑥 + 𝑦, Q(x, y) = 𝑥2 − 𝑥, 
𝑑𝑃

𝑑𝑦
= 1, 

𝑑𝑄

𝑑𝑥
= 2𝑥 − 1, условие 

𝑑𝑃

𝑑𝑦
=
𝑑𝑄

𝑑𝑥
 не выполнено. 

Попробуем найти интегрирующий множитель. 
𝑑𝑃
𝑑𝑦
−
𝑑𝑄
𝑑𝑥

𝑄
=
1 − (2𝑥 − 1)

𝑥2 − 𝑥
=
2(1 − 𝑥)

𝑥(𝑥 − 1)
=
−2

𝑥
= 𝑓(𝑥). 

Следовательно,  
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𝑙𝑛𝜇 = ∫𝑓(𝑥)𝑑𝑥 = ∫
−2

𝑥
𝑑𝑥 = −2 ln 𝑥 . 

Интегрирующий множитель равен 

𝜇 =
1

𝑥2
. 

Умножим обе части уравнения на 𝜇; получим 

𝑥 + 𝑦

𝑥2
𝑑𝑥 +

𝑥2 − 𝑥

𝑥2
𝑑𝑦 = 0 ⇒  (

1

𝑥
+
𝑦

𝑥2
) 𝑑𝑥 + (1 −

1

𝑥
)𝑑𝑦 = 0. 

Найдем первый интеграл 

𝑢(𝑥, 𝑦) = ∫𝑃(𝑥, 𝑦)𝑑𝑥 + 𝜑(𝑦) = ∫(
1

𝑥
+
𝑦

𝑥2
) 𝑑𝑥 + 𝜑(𝑦) = 𝑙𝑛𝑥 −

𝑦

𝑥
+ 𝜑(𝑦). 

Найдем второй интеграл 

𝑢(𝑥, 𝑦) = ∫𝑄(𝑥, 𝑦)𝑑𝑦 + 𝜓(𝑥) = ∫(1 −
1

𝑥
)𝑑𝑦 + 𝜓(𝑥) = 𝑦 −

𝑦

𝑥
+ 𝜓(𝑥). 

Сравнивая правые части полученных выражений, получим 

𝑙𝑛𝑥 −
𝑦

𝑥
+ 𝑦 = 𝐶  или  𝑥𝑙𝑛𝑥 − 𝑦 + 𝑥𝑦 − 𝐶𝑥 = 0. 

Замечание. Данное уравнение можно преобразовать к линейному диффе-

ренциальному уравнению вида 

(𝑥2 − 𝑥)𝑦 ′ + 𝑦 = −𝑥. 
 

1.7. Одношаговые методы интегрирования дифференциальных уравне-

ний первого порядка 
 

Простейшим численным методом решения задачи Коши для дифферен-

циального уравнения является метод Эйлера. Для равноотстоящих узлов зна-

чения сеточной функции в узлах определяются по формулам: 𝑦𝑖+1 = 𝑦𝑖 +
ℎ𝑓(𝑥𝑖 , 𝑦𝑖),  i = 0, 1, ... 

Напомним формулировку задачи Коши. Требуется найти функцию y(x), 

удовлетворяющую дифференциальному уравнению 𝑦 ′ = 𝑓(𝑥, 𝑦) и принимаю-

щую при x = x0 заданное значение y0, т. е. y(x0) = y0. 

Наиболее распространенным является метод Рунге – Кутта. Приведем 

схему Рунге – Кутта четвертого порядка. 

𝑦𝑖+1 = 𝑦𝑖 +
1

6
(𝑐0 + 2𝑐1 + 2𝑐2 + 𝑐3),  i = 0, 1, ..., 

𝑐0 = ℎ𝑓(𝑥𝑖 , 𝑦𝑖), 𝑐1 = ℎ𝑓 (𝑥𝑖 +
ℎ

2
, 𝑦𝑖 +

𝑐0
2
), 

𝑐2 = ℎ𝑓 (𝑥𝑖 +
ℎ

2
, 𝑦𝑖 +

𝑐1

2
) ,       𝑐3 = ℎ𝑓(𝑥𝑖 + ℎ, 𝑦𝑖 + 𝑐2). 

Метод Рунге – Кутта требует большого объема вычислений, но имеет ма-

лую погрешность и позволяет проводить расчеты с большим шагом.  

 

Задание 24. Решить задачу Коши 𝑦 ′ = 2𝑥 − 1 при y(0) = 1, 0 ≤ 𝑥 ≤ 0,5, 

h = 0,1 методом Эйлера. 

Решение. В нашем случае x0 = 0, y0 = 1, f(x, y) = 2x - 1. Найдем значения yi  

𝑦1 = 𝑦0 + ℎ𝑓(𝑥0, 𝑦0) = 1 + 0,1 ⋅ (2 ⋅ 0 − 1) = 0,9,  
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𝑦2 = 𝑦1 + ℎ𝑓(𝑥1, 𝑦1) = 0,9 + 0,1 ⋅ (2 ⋅ 0,1 − 1) = 0,9 − 0,08 = 0,82,  
𝑦3 = 𝑦2 + ℎ𝑓(𝑥2, 𝑦2) = 0,82 + 0,1 ⋅ (2 ⋅ 0,2 − 1) = 0,82 − 0,06 = 0,76,  
𝑦4 = 𝑦3 + ℎ𝑓(𝑥3, 𝑦3) = 0,76 + 0,1 ⋅ (2 ⋅ 0,3 − 1) = 0,76 − 0,04 = 0,72,  
𝑦5 = 𝑦4 + ℎ𝑓(𝑥4, 𝑦4) = 0,72 + 0,1 ⋅ (2 ⋅ 0,4 − 1) = 0,72 − 0,02 = 0,7,  
𝑦6 = 𝑦5 + ℎ𝑓(𝑥5, 𝑦5) = 0,7 + 0,1 ⋅ (2 ⋅ 0,5 − 1) = 0,7.  
Общее решение дифференциального уравнения имеет вид y = x2 – x + C. 

Найдем константу C из начальных условий: 1 = 0 – 0 + C, C = 1. Следовательно, 

точное решение задачи Коши y = x2 – x + 1. Сравним результаты. 

 

xi Метод Эйлера Точное решение 

0 1 1 

0,1 0,9 0,91 

0,2 0,82 0,84 

0,3 0,76 0,79 

0,4 0,72 0,76 

0,5 0,7 0,75 

 

Для сравнения найдем методом Рунге – Кутта y1 и y2: 

𝑐0 = 0,1 ⋅ 𝑓(0,  1) = −0,1,          𝑐1 = 0,1 ⋅ 𝑓(0,05,  0,5) = −0,09, 
𝑐2 = 0,1 ⋅ 𝑓(0,05,  0,55) = −0,09,       𝑐3 = 0,1 ⋅ 𝑓(0,1,   0, 1) = −0,08, 

𝑦1 = 𝑦0 +
1

6
(𝑐0 + 2𝑐1 + 2𝑐2 + 𝑐3) = 

= 1 +
1

6
(−0,1 − 0,18 − 0,18 − 0,08) = 1 −

0,54

6
= 0,91. 

𝑐0 = 0,1 ⋅ 𝑓(0,1,  0,91) = −0,08,             𝑐1 = 0,1 ⋅ 𝑓(0,15,  0,51) = −0,07, 
𝑐2 = 0,1 ⋅ 𝑓(0,15,  0,56) = −0,07,       𝑐3 = 0,1 ⋅ 𝑓(0,2,   0, 21) = −0,06, 

𝑦2 = 0,91 +
1

6
(−0,08 − 0,14 − 0,14 − 0,06) = 0,91 −

0,42

6
= 0,84. 
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§ 2. Дифференциальные уравнения высших порядков 

 

2.1. Уравнения вида 𝒚(𝒏) = 𝒇(𝒙) 
 

Решение данного уравнения получается последовательным интегрирова-

нием его левой и правой частей. 

 

Задание 25. Найдите общее решение дифференциального уравнения 

𝑦‴ = 𝑒
𝑥
2 + 1. 

Решение. Найдем общее решение последовательным интегрированием 

данного уравнения: 

𝑦″ = ∫(𝑒
𝑥

2 + 1)𝑑𝑥 = 2𝑒
𝑥

2 + 𝑥 + 𝐶1, 

𝑦′ = ∫(2𝑒
𝑥

2 + 𝑥 + 𝐶1)𝑑𝑥 = 4𝑒
𝑥

2 +
𝑥2

2
+ 𝐶1𝑥 + 𝐶2, 

𝑦 = ∫(4𝑒
𝑥

2 +
𝑥2

2
+ 𝐶1𝑥 + 𝐶2)𝑑𝑥 = 8𝑒

𝑥

2 +
𝑥3

6
+ 𝐶1

𝑥2

2
+ 𝐶2𝑥 + 𝐶3. 

 

Задание 26. Найдите общее решение дифференциального уравнения 

𝑦″ = 𝑠𝑖𝑛 4 𝑥 + 𝑥 − 1. 
Решение. Найдем общее решение последовательным интегрированием 

данного уравнения: 

𝑦′ = ∫(𝑠𝑖𝑛 4 𝑥 + 𝑥 − 1)𝑑𝑥 = −
1

4
𝑐𝑜𝑠 4 𝑥 +

𝑥2

2
− 𝑥 + 𝐶1, 

𝑦 = ∫(−
1

4
𝑐𝑜𝑠 4 𝑥 +

𝑥2

2
− 𝑥 + 𝐶1) 𝑑𝑥 = −

1

16
𝑠𝑖𝑛 4 𝑥 +

𝑥3

6
−
𝑥2

2
+ 𝐶1𝑥 + 𝐶2. 

 

Задание 27. Тело брошено вертикально вверх с начальной скоростью v0. 

Определить закон движения без учета силы трения. 

Решение. На тело действует сила тяжести F = mg, где g – ускорение сво-

бодного падения.  

Из второго закона Ньютона получим дифференциальное уравнение дви-

жения 

𝑚𝑎 = −𝑚𝑔  ⇒  
𝑑2𝑠

𝑑𝑡2
= −𝑔. 

Интегрируя дважды по t, получим 

𝑑𝑠

𝑑𝑡
= −𝑔𝑡 + 𝐶1   ⇒  𝑠 = −

𝑔𝑡2

2
+ 𝐶1𝑡 + 𝐶2. 

Используя начальные условия s(0) = 0, v(0) = v0, найдем постоянные C1 и 

C2: C2 = 0, C1 = v0. 

Пройденный путь брошенного вертикально вверх тела с начальной ско-

ростью v0 без учета силы трения определяется 

𝑠 = −
𝑔𝑡2

2
+ 𝑣0𝑡. 
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2.2. Уравнения второго порядка, допускающие понижение порядка 

 

1. Уравнение вида 𝑦″ = 𝑓(𝑥, 𝑦 ′) не содержит явным образом искомой 

функции y. Порядок такого уравнения может быть понижен с помощью подста-

новки 𝑦′ = 𝑝, 𝑦″ = 𝑝′. 

2. Уравнение вида 𝑦″ = 𝑓(𝑦, 𝑦 ′) не содержит явным образом независи-

мую переменную x. Порядок этого уравнения также может быть понижен. И в 

этом случае полагаем 𝑦 ′ = 𝑝, но теперь мы будем считать p функцией от y (а не 

от x, как прежде), тогда 𝑦″ = 𝑝𝑝′.  

 

Задание 27. Найдите общее решение дифференциального уравнения 

𝑥𝑦″ + 2𝑦 ′ = 0. 

Решение. В запись данного дифференциального уравнения второго по-

рядка не входит искомая функция 𝑦 = 𝑦(𝑥), поэтому понижение порядка до-

стигается с помощью замены  𝑧 = 𝑦 ′. Тогда 𝑦″ = (𝑦′)′ = 𝑧′ и исходное уравне-

ние принимает вид 𝑥𝑧 ′ + 2𝑧 = 0. Мы получили уравнение первого порядка с 

разделяющимися переменными. 

𝑥
𝑑𝑧

𝑑𝑥
= −2𝑧  ⇒  

𝑑𝑧

𝑧
= −2

𝑑𝑥

𝑥
  ⇒  𝑙𝑛𝑧 = −2𝑙𝑛𝑥 + 𝑙𝑛𝐶1   ⇒ 𝑧 =

𝐶1
𝑥2
. 

Особое решение z = 0 будет входить в общее, если его дополнить услови-

ем 

 C1 = 0. 

Так как 𝑧 =
𝑑𝑦

𝑑𝑥
,  то получаем 

𝑑𝑦

𝑑𝑥
=
𝐶1
𝑥2
  ⇒  𝑑𝑦 =

𝐶1
𝑥2
  ⇒  𝑦 = −

𝐶1
𝑥
+ 𝐶2. 

 

Задание 28. Найдите частное решение уравнения 𝑦″ = 4𝑦, удовлетворя-

ющее начальным условиям  𝑦(0) = 1, 𝑦′(0) = 1. 

Решение. Данное уравнение не содержит x. Положим 𝑦′ = 𝑝, рассматри-

вая р как функцию от y. Тогда 𝑦″ = 𝑝𝑝′, и мы получаем уравнение первого по-

рядка относительно вспомогательной функции p: 

𝑝
𝑑𝑝

𝑑𝑦
= 4𝑦  ⇒  𝑝𝑑𝑝 = 4𝑦𝑑𝑦  ⇒  

𝑝2

2
= 2𝑦2 + 𝐶1. 

Определим значение произвольной постоянной 𝐶1, используя начальные 

условия: 1 = 1 + 𝐶1, 𝐶1 = 0. Следовательно, 
𝑑𝑦

𝑑𝑥
= ±𝑦. 

Разделяем переменные и интегрируем 
𝑑𝑦

𝑦
= ±𝑑𝑥  ⇒  𝑙𝑛𝑦 = ±𝑥+𝑙𝑛𝐶2  ⇒  𝑦 = 𝐶2𝑒

±𝑥. 

Пользуясь тем, что 𝑦(0) = 1, найдем 𝐶2: 𝐶2 = 1. 

Искомое частное решение: 

𝑦 = 𝑒𝑥 или 𝑦 = 𝑒−𝑥 . 
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Замечание. Аналогичным способом можно проинтегрировать уравнение 

𝑦(𝑛) = 𝑓(𝑥, 𝑦(𝑛−1)), полагая 𝑦(𝑛−1) = 𝑝. 

Задание 30. Тело массой m падает с некоторой высоты.  Найдите закон 

движения падающего тела, если оно испытывает сопротивление, пропорцио-

нальное скорости. 

Решение. Запишем второй закон Ньютона 

𝑚𝑎 = 𝑚𝑔 − 𝑘𝑣. 
Если путь равен s, то 

𝑣 =
𝑑𝑠

𝑑𝑡
, 𝑎 =

𝑑2𝑠

𝑑𝑡2
. 

Второй закон Ньютона запишем в виде  

𝑚
𝑑2𝑠

𝑑𝑡2
= 𝑚𝑔 − 𝑘

𝑑𝑠

𝑑𝑡
. 

Сделаем замену 
𝑑𝑠

𝑑𝑡
= 𝑣, 

𝑑2𝑠

𝑑𝑡2
=
𝑑𝑣

𝑑𝑡
. Тогда получим дифференциальное урав-

нение первого порядка с разделяющимися переменными 

𝑚
𝑑𝑣

𝑑𝑡
= 𝑚𝑔 − 𝑘𝑣  ⇒  

𝑚𝑑𝑣

𝑚𝑔 − 𝑘𝑣  
= 𝑑𝑡  ⇒  −

𝑚

𝑘
𝑙𝑛(𝑚𝑔 − 𝑘𝑣) = 𝑡 + 𝐶. 

Выражаем v 

𝑚𝑔 − 𝑘𝑣 = 𝑒−
𝑘
𝑚
(𝑡+𝐶)   ⇒  𝑣 =

𝑚𝑔

𝑘
−
1

𝑘
𝑒−

𝑘
𝑚
(𝑡+𝐶). 

Из начальных условий v(0) = 0 находим C 

0 =
𝑚𝑔

𝑘
−
1

𝑘
𝑒−

𝑘
𝑚
𝐶  ⇒  −

𝑘

𝑚
𝐶 = ln(𝑚𝑔) ⇒  𝐶 = −

𝑚

𝑘
ln(𝑚𝑔). 

В результате имеем 

𝑣 =
𝑚𝑔

𝑘
(1 − 𝑒−

𝑘
𝑚
𝑡). 

Поскольку 
𝑑𝑠

𝑑𝑡
= 𝑣, то 

𝑑𝑠 =
𝑚𝑔

𝑘
(1 − 𝑒−

𝑘
𝑚
𝑡) 𝑑𝑡 ⇒  𝑠 =

𝑚𝑔

𝑘
(𝑡 +

𝑚

𝑘
𝑒−

𝑘
𝑚
𝑡) + 𝐶1. 

Из начальных условий s(0) = 0 находим C1 

0 =
𝑚2𝑔

𝑘2
+ 𝐶1 ⇒ 𝐶1 = −

𝑚2𝑔

𝑘2
. 

Пройденный путь брошенного тела с нулевой начальной скоростью с 

учетом силы трения, пропорциональной скорости, определяется 

𝑠 =
𝑚𝑔

𝑘
𝑡 −

𝑚2𝑔

𝑘2
(1 − 𝑒−

𝑘
𝑚
𝑡). 

 

Задание 31. Тело массой m падает с некоторой высоты.  Найдите ско-

рость падающего тела через 2 сек для m = 75 кг и m = 12 кг, если оно испытыва-

ет сопротивление, пропорциональное квадрату скорости. Коэффициент про-

порциональности равен 0,6 кг/м. 

Решение. Запишем второй закон Ньютона 

𝑚𝑎 = 𝑚𝑔 − 𝑘𝑣2. 
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Если путь равен s, то 

𝑣 =
𝑑𝑠

𝑑𝑡
, 𝑎 =

𝑑2𝑠

𝑑𝑡2
. 

Второй закон Ньютона запишем в виде  

𝑚
𝑑2𝑠

𝑑𝑡2
= 𝑚𝑔 − 𝑘 (

𝑑𝑠

𝑑𝑡
)
2

. 

Сделаем замену 
𝑑𝑠

𝑑𝑡
= 𝑣, 

𝑑2𝑠

𝑑𝑡2
=
𝑑𝑣

𝑑𝑡
. Тогда получим дифференциальное урав-

нение первого порядка с разделяющимися переменными 

𝑚
𝑑𝑣

𝑑𝑡
= 𝑚𝑔 − 𝑘𝑣2   ⇒  

𝑚𝑑𝑣

𝑚𝑔 − 𝑘𝑣2  
= 𝑑𝑡  ⇒  −

𝑚

𝑘

𝑑𝑣

𝑣2 −
𝑚𝑔
𝑘
  
= 𝑑𝑡. 

Пусть 
𝑚𝑔

𝑘
= 𝑏2. Интегрируем обе части 

−
𝑚

𝑘𝑏
𝑙𝑛 |
𝑣 − 𝑏

𝑣 + 𝑏
| = 𝑡 + 𝐶. 

Из начальных условий v(0) = 0 находим C = 0. 

Выражаем скорость v 

𝑣 − 𝑏

𝑣 + 𝑏
= −𝑒−

𝑘𝑏
𝑚
𝑡   ⇒  𝑣 − 𝑏 = −𝑣𝑒−

𝑘𝑏
𝑚
𝑡 − 𝑏𝑒−

𝑘𝑏
𝑚
𝑡 ⇒  𝑣 = 𝑏

1 − 𝑒−
𝑘𝑏
𝑚
𝑡

1 + 𝑒−
𝑘𝑏
𝑚
𝑡
, 

или 

𝑣 = √
𝑚𝑔

𝑘
(1 −

2

𝑒
√𝑘𝑔
𝑚
∙𝑡
+ 1

). 

Скорость через 2 секунды для m = 75 кг 

 

𝑣 = 35 −
2

𝑒0,56 + 1
≈ 35 − 0,73 = 34,27 

м

с
, 

 

для m = 12 кг 

𝑣 = 14 −
2

𝑒1,4 + 1
≈ 14 − 0,4 = 13,6 

м

с
. 

 

2.3. Линейные однородные уравнения с постоянными коэффициентами 

 

Рассмотрим линейное однородное дифференциальное уравнение второго 

порядка с постоянными коэффициентами, т. е. уравнение 𝑦″ + 𝑝𝑦′ + 𝑞𝑦 = 0, 

где 𝑝 и 𝑞 - постоянные числа. 

Чтобы найти общее решение этого уравнения, достаточно найти два ли-

нейно независимых частных решения в виде 𝑦 = 𝑒𝑘𝑥, где 𝑘 = 𝐶𝑜𝑛𝑠𝑡.  
Подставляя эту функцию и ее производные 𝑦′ = 𝑘𝑒𝑘𝑥 и 𝑦″ = 𝑘2𝑒𝑘𝑥 в рас-

сматриваемое уравнение, получим: 𝑒𝑘𝑥(𝑘2 + 𝑝𝑘 + 𝑞) = 0. Так как 𝑒𝑘𝑥 ≠ 0, зна-

чит 𝑘2 + 𝑝𝑘 + 𝑞 = 0. 
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Следовательно, если 𝑘 будет удовлетворять полученному уравнению, ко-

торое называется характеристическим, то 𝑒𝑘𝑥 будет решением исходного 

уравнения. 

Характеристическим уравнением является квадратное уравнение, имею-

щее два корня. 

Возможны следующие случаи: 

а) Корни характеристического уравнения действительные и различные. 

В этом случае частными решениями будут функции 𝑦1 = 𝑒
𝑘1𝑥 и 𝑦2 =

𝑒𝑘2𝑥. Общим решением уравнения будет 𝑦 = 𝐶1𝑒
𝑘1𝑥 + 𝐶2𝑥𝑒

𝑘2𝑥. 

 

Задание 29. Найдите общее решение уравнения 𝑦″ + 𝑦 ′ − 6𝑦 = 0. 

Решение. Характеристическое уравнение имеет вид 𝑘2 + 𝑘 − 6 = 0. Кор-

ни характеристического уравнения: 𝑘1 = 2,   k2 = −3. Общее решение: 

𝑦 = 𝐶1𝑒
2𝑥 + 𝐶2𝑒

−3𝑥. 
 

б) Корни характеристического уравнения действительные и равные. 

В этом случае мы имеем только одно частное решение 𝑦 = 𝑒𝑘𝑥, т. к. 

𝑘1 = 𝑘2 = 𝑘. При этом общее решение будет 

𝑦 = 𝐶1𝑒
𝑘𝑥 + 𝐶2𝑥𝑒

𝑘𝑥. 
 

Задание 30. Найдите общее решение уравнения 𝑦″ + 6𝑦 ′ + 9𝑦 = 0. 

Решение. Составим характеристическое уравнение 𝑘2 + 6𝑘 + 9 = 0. 

Найдем его корни: 𝑘1 = −3,   𝑘2 = −3. Общим решением будет функция 

𝑦 = 𝐶1𝑒
−3𝑥 + 𝐶2𝑥𝑒

−3𝑥. 
 

в) Корни характеристического уравнения комплексные (см. прилржение). 

Так как коэффициенты 𝑝 и 𝑞 характеристического уравнения действи-

тельные числа, то комплексные корни будут сопряженными. Причем, 𝑘1 = 𝛼 +
𝑖𝛽, 
𝑘2 = 𝛼 − 𝑖𝛽. Общее решение в рассматриваемом случае имеет вид 

𝑦 = 𝑒𝛼𝑥(𝐶1 𝑐𝑜𝑠 𝛽 𝑥 + 𝐶2 𝑠𝑖𝑛 𝛽 𝑥). 
 

Задание 31. Найти частное решение уравнения 𝑦″ + 2𝑦′ + 5𝑦 = 0, удо-

влетворяющее начальным условиям 𝑦(0) = 0,   𝑦 ′(0) = 1. 

Решение. Составим характеристическое уравнение 𝑘2 + 2𝑘 + 5 = 0. 

Найдем его корни 𝑘1,2 = −1 ± 2𝑖. Следовательно, общее решение 

𝑦 = 𝑒−𝑥(𝐶1 𝑐𝑜𝑠 2 𝑥 + 𝐶2 𝑠𝑖𝑛 2 𝑥). 
Найдем теперь частное решение, удовлетворяющее заданным начальным 

условиям. На основании первого условия находим 0 = 𝑒−0(𝐶1 𝑐𝑜𝑠 0 + 𝐶2 𝑠𝑖𝑛 0), 
откуда 𝐶1 = 0. С учетом этого 𝑦′ = 𝑒−𝑥2𝐶2 𝑐𝑜𝑠 2 𝑥 − 𝑒

−𝑥𝐶2 𝑠𝑖𝑛 2 𝑥, из второго 

условия получаем: 1 = 2𝐶2, т. е. 𝐶2 =
1

2
. Таким образом, искомое частное реше-

ние 
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𝑦 =
1

2
𝑒−𝑥 𝑠𝑖𝑛 2 𝑥. 

Замечание. Аналогичным способом решаются однородное дифференци-

альное n – порядка. 

 

Задание 32. Найдите общее решение уравнения 𝑦″′ + 5𝑦 ′′ + 6𝑦′ = 0. 

Решение. Составим характеристическое уравнение 𝑘3 + 5𝑘2 + 6𝑘 = 0. 

Найдем его корни: 𝑘1 = −3,   𝑘2 = −2,   𝑘3 = 0. Общим решением будет функ-

ция 

𝑦 = 𝐶1𝑒
−3𝑥 + 𝐶2𝑒

−2𝑥 + 𝐶3. 
 

2.4. Линейные неоднородные уравнения с постоянными 

коэффициентами 

 

Линейные неоднородные дифференциальные уравнения второго порядка 

с постоянными коэффициентами имеют вид 𝑦″ + 𝑝𝑦′ + 𝑞𝑦 = 𝑓(𝑥), где 𝑝 и 𝑞 - 

действительные числа. 

Общее решение линейного неоднородного уравнения представляется как 

сумма какого-нибудь частного решения 𝑦∗ этого уравнения и общего решения 

𝑌 соответствующего однородного уравнения, т. е. 𝑦 = 𝑌 + 𝑦∗. 
Вид частного 𝑦∗ решения неоднородного уравнения зависит от вида пра-

вой части этого уравнения. Рассмотрим некоторые случаи. 

а) 𝑓(𝑥) = 𝑎2𝑥
2 + 𝑎1𝑥 + 𝑎0   (𝑎2 ≠ 0). Если 𝑞 ≠ 0, то частное решение не-

однородного уравнения ищем также в форме квадратного трехчлена: 𝑦∗ =
𝐴2𝑥

2 + 𝐴1𝑥 + 𝐴0, где 𝐴2, 𝐴1, 𝐴0 - неопределенные коэффициенты. Если 𝑞 = 0, 

то частное решение 𝑦∗ ищем в виде 𝑦∗ = 𝑥(𝐴2𝑥
2 + 𝐴1𝑥 + 𝐴0), когда один из 

корней характеристического уравнения равен нулю, и в виде 𝑦∗ = 𝑥2(𝐴2𝑥
2 +

𝐴1𝑥 + 𝐴0), когда оба корня характеристического уравнения нули. Аналогично 

обстоит дело, если 𝑓(𝑥) - многочлен 𝑃(𝑥) произвольной степени. 

 

Задание 33. Найдите общее решение уравнения 𝑦″ + 𝑦 ′ = 2𝑥 + 1. 

Решение. Составим характеристическое уравнение однородного уравне-

ния и найдем его корни: 𝑘2 + 𝑘 = 0,   𝑘1 = 0,   𝑘2 = −1,   𝑌 = 𝐶1 + 𝐶2𝑒
−𝑥. Так 

как ноль – однократный корень характеристического уравнения, то частное ре-

шение данного уравнения ищем в виде 𝑦∗ = 𝑥(𝐴1𝑥 + 𝐴0). Отсюда имеем: 𝑦∗′ =
2𝐴1𝑥 + 𝐴0,   𝑦

∗″ = 2𝐴1. Подставляем в исходное уравнение: 2𝐴1 + 2𝐴1𝑥 + 𝐴0 =
2𝑥 + 1. Искомые коэффициенты будут: 𝐴1 = 1,   𝐴0 = −1. Значит, частное ре-

шение будет 𝑦∗ = 𝑥2 − 𝑥, а общее решение имеет вид 

𝑦 = 𝐶1 + 𝐶2𝑒
−𝑥 + 𝑥2 − 𝑥. 

 

б) 𝑓(𝑥) = 𝑎𝑒𝑏𝑥   (𝑎 ≠ 0). Частное решение ищем в виде 𝑦∗ = 𝐴𝑒𝑏𝑥, где 𝐴 - 

неопределенный коэффициент. Если 𝑏 - корень характеристического уравне-

ния, то частное решение ищем в виде 𝑦∗ = 𝐴𝑥𝑒𝑏𝑥, когда 𝑏 - однократный ко-
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рень, и в виде 𝑦∗ = 𝐴𝑥2𝑒𝑏𝑥, когда 𝑏 - двукратный корень. Аналогично будет, 

если 𝑓(𝑥) = 𝑃(𝑥)𝑎𝑒𝑏𝑥, где 𝑃(𝑥) - многочлен. 

 

Задание 34. Найдите общее решение уравнения 𝑦″ − 2𝑦 ′ + 𝑦 = 2𝑒𝑥. 

Решение. Составим характеристическое уравнение однородного уравне-

ния и найдем его корни: 𝑘2 − 2𝑘 + 1 = 0,   𝑘1 = 𝑘2 = 1,   𝑌 = (𝐶1 + 𝐶2𝑥)𝑒
𝑥. Так 

как в характеристическом уравнении корень имеет кратность, равную двум, то 

частное решение данного уравнения ищем в виде 𝑦∗ = 𝐴𝑥2𝑒𝑥. Далее имеем: 

𝑦∗′ = 𝐴𝑥(𝑥 + 2)𝑒𝑥,   𝑦∗″ = 𝐴(𝑥2 + 4𝑥 + 2)𝑒𝑥, 
𝐴𝑒𝑥(𝑥2 + 4𝑥 + 2) − 2𝐴𝑥𝑒𝑥(𝑥 + 2) + 𝐴𝑥2𝑒𝑥 = 2𝑒𝑥,   𝐴 = 1, 
𝑦∗ = 𝑥2𝑒𝑥.  

Общее решение дифференциального уравнения 

𝑦 = (𝐶1 + 𝐶2𝑥)𝑒
𝑥 + 𝑥2𝑒𝑥. 

 

в) 𝑓(𝑥) = 𝑎 𝑐𝑜𝑠𝜔 𝑥 + 𝑏 𝑠𝑖𝑛𝜔 𝑥 (𝑎 и 𝑏 не нули одновременно). В этом слу-

чае частное решение 𝑦∗ ищем также в форме тригонометрического двучлена 

𝑦∗ = 𝐴 𝑐𝑜𝑠𝜔 𝑥 + 𝐵 𝑠𝑖𝑛 𝜔 𝑥, где 𝐴 и 𝐵 - неопределенные коэффициенты.  

В случае 𝑝 = 0,   𝑞 = 𝜔2 (или когда ±𝜔𝑖 - корни характеристического 

уравнения) частное решение исходного уравнения ищем в виде 

𝑦∗ = 𝑥(𝐴 𝑐𝑜𝑠𝜔 𝑥 + +𝐵 𝑠𝑖𝑛𝜔 𝑥). 
 

Задание 35. Найдите общее решение уравнения 𝑦″ + 𝑦 = 𝑐𝑜𝑠 𝑥. 

Решение. Составим характеристическое уравнение однородного уравне-

ния и найдем его корни: 𝑘2 + 1 = 0,   𝑘1 = 𝑖,   𝑘2 = −𝑖,   𝑌 = 𝐶1 𝑐𝑜𝑠 𝑥 + 𝐶2 𝑠𝑖𝑛 𝑥. 

Так как ±𝑖 - корни характеристического уравнения, то частное решение данно-

го уравнения ищем в виде 𝑦∗ = 𝑥(𝐴 𝑐𝑜𝑠 𝑥 + 𝐵 𝑠𝑖𝑛 𝑥). Далее имеем:  

𝑦∗′ = 𝐴 𝑐𝑜𝑠 𝑥 + 𝐵 𝑠𝑖𝑛 𝑥 + 𝑥(−𝐴 𝑠𝑖𝑛 𝑥 + 𝐵 𝑐𝑜𝑠 𝑥),    

𝑦∗″ = −2𝐴 𝑠𝑖𝑛 𝑥 + 2𝐵 𝑐𝑜𝑠 𝑥 − 𝑥(𝐴 𝑐𝑜𝑠 𝑥 + 𝐵 𝑠𝑖𝑛 𝑥), 

−2𝐴 𝑠𝑖𝑛 𝑥 + 2𝐵 𝑐𝑜𝑠 𝑥 = 𝑐𝑜𝑠 𝑥 ,   𝐴 = 0,   𝐵 =
1

2
,   𝑦∗ =

𝑥

2
𝑠𝑖𝑛 𝑥. 

Общее решение дифференциального уравнения 

𝑦 = 𝐶1 𝑐𝑜𝑠 𝑥 + 𝐶2 𝑠𝑖𝑛 𝑥 +
𝑥

2
𝑠𝑖𝑛 𝑥. 

 

Задание 20. Идеальный колебательный контур с индуктивностью L и ем-

костью C подключается к источнику переменного напряжения 𝑈 = 𝑈0𝑠𝑖𝑛𝜔𝑡. 
При какой частоте источника ω колебания тока будут иметь неограниченно 

возрастающую со временем амплитуду? 

Решение. Пусть i(t) — это сила тока в цепи, а q(t) — заряд конденсатора в 

момент времени t. Тогда напряжение на катушке составляет 𝐿 ∙ 𝑖′, а на конден-

саторе 
𝑞

𝐶
. Используя второй закон Кирхгофа, получим 

𝐿 ∙ 𝑖′ +
𝑞

𝐶
= 𝑈0𝑠𝑖𝑛𝜔𝑡. 

Дифференцируя полученное уравнение по t с учетом 𝑞′ = 𝑖, получим 
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𝐿 ∙ 𝑖′′ +
𝑖

𝐶
= 𝑈0𝜔 ∙ 𝑐𝑜𝑠𝜔𝑡. 

Характеристическое уравнение 𝐿 ∙ 𝑘2 +
1

𝐶
= 0 имеет корни 𝑘1,2 = ±

1

√𝐿𝐶
. 

Общее решение однородного дифференциального уравнения 

𝑖 = 𝐶1𝑐𝑜𝑠
𝑡

√𝐿𝐶
+ 𝐶2𝑠𝑖𝑛

𝑡

√𝐿𝐶
 

с постоянной амплитудой √𝐶1
2 + 𝐶2

2. 

Если 𝜔 ≠
𝑡

√𝐿𝐶
, то частное решение будем искать в виде 

𝑖 = 𝐴𝑐𝑜𝑠𝜔𝑡 + 𝐵𝑠𝑖𝑛𝜔𝑡. 
В этом случае амплитуда колебания тоже будет постоянной 

√𝐴2 + 𝐵2. 

Если 𝜔 =
𝑡

√𝐿𝐶
, то частное решение будем искать в виде 

𝑖 = 𝑡(𝐴𝑐𝑜𝑠𝜔𝑡 + 𝐵𝑠𝑖𝑛𝜔𝑡). 
В этом случае амплитуда колебания будет линейно возрастать со време-

нем 

𝑡√𝐴2 + 𝐵2. 

При 𝜔 =
𝑡

√𝐿𝐶
 сила тока в цепи 

𝑖 = (𝐶1 + 𝐴𝑡)𝑐𝑜𝑠
𝑡

√𝐿𝐶
+ (𝐶2 + 𝐵𝑡)𝑠𝑖𝑛

𝑡

√𝐿𝐶
. 

 имеет неограниченно возрастающую амплитуду со временем 

√(𝐶1 + 𝐴𝑡)
2 + (𝐶2 + 𝐵𝑡)

2. 
 

Для рассматриваемых дифференциальных уравнений справедлива так 

называемая теорема наложения, которая позволяет отыскивать частное реше-

ние в более сложных случаях. 

Теорема. Если 𝑦1 является решением уравнения 𝑦″ + 𝑝𝑦′ + 𝑞𝑦 = 𝑓1(𝑥), а 

𝑦2 решением уравнения 𝑦″ + 𝑝𝑦′ + 𝑞𝑦 = 𝑓2(𝑥), то 𝑦1 + 𝑦2 есть решение уравне-

ния 𝑦″ + 𝑝𝑦 ′ + 𝑞𝑦 = 𝑓1(𝑥) + 𝑓2(𝑥). 
 

Задание 36. Найти общее решение уравнения 𝑦″ + 2𝑦 ′ = 1 + 2𝑒𝑥 − 𝑠𝑖𝑛 𝑥.  

Решение. Составим характеристическое уравнение однородного уравне-

ния и найдем его корни:𝑘2 + 2𝑘 = 0, 𝑘1 = 0,   𝑘2 = −2, 𝑌 = 𝐶1 + 𝐶2𝑒
−2𝑥. Нахо-

дим частное решение 𝑦1
∗ уравнения 𝑦″ + 2𝑦′ = 1 в виде 𝑦1

∗ = 𝐴𝑥, тогда 𝑦1
∗′ =

𝐴,   𝑦1
∗″ = 0. Отсюда 0 − 2𝐴 = 1,   𝐴 = −

1

2
. Следовательно, 𝑦1

∗ = −
1

2
𝑥. 

Частное решение 𝑦2
∗ уравнения 𝑦″ + 2𝑦′ = 2𝑒𝑥 ищем в форме 𝑦2

∗ = 𝐵𝑒𝑥. 

Тогда 𝑦2
∗′ = 𝐵𝑒𝑥,   𝑦2

∗″ = 𝐵𝑒𝑥. Отсюда 𝐵𝑒𝑥 + 2𝐵𝑒𝑥 = 2𝑒𝑥,   3𝐵 = 2,   𝐵 =
2

3
. Сле-

довательно, 𝑦2
∗ =

2

3
𝑒𝑥. 

Наконец, находим частное решение 𝑦3
∗ уравнения 𝑦″ + 2𝑦′ = −𝑠𝑖𝑛 𝑥 в 

форме 𝑦3
∗ = 𝐶 𝑐𝑜𝑠 𝑥 + 𝐷 𝑠𝑖𝑛 𝑥, тогда 𝑦3

∗′ = −𝐶 𝑠𝑖𝑛 𝑥 + 𝐷 𝑐𝑜𝑠 𝑥 ,   𝑦3
∗″ = −𝐶 𝑐𝑜𝑠 𝑥 −

𝐷 𝑠𝑖𝑛 𝑥. Подставляя в уравнение, получим: −𝐶 𝑐𝑜𝑠 𝑥 − 𝐷 𝑠𝑖𝑛 𝑥 − 2𝐶 𝑠𝑖𝑛 𝑥 +
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2𝐷 𝑐𝑜𝑠 𝑥 = −𝑠𝑖𝑛 𝑥. Отсюда имеем:{
−С + 2В = 0,
−𝐷 − 2С = −1.

  Значит 𝐶 =
2

5
,   𝐷 =

1

5
. Сле-

довательно, 𝑦3
∗ =

2

5
𝑐𝑜𝑠 𝑥 +

1

5
𝑠𝑖𝑛 𝑥. По теореме наложения частное решение ис-

ходного уравнения будет: 𝑦∗ = 𝑦1
∗ + 𝑦2

∗ + 𝑦3
∗ = −

1

2
𝑥 +

2

3
𝑒𝑥 +

2

5
𝑐𝑜𝑠 𝑥 +

1

5
𝑠𝑖𝑛 𝑥.  

Общее решение дифференциального уравнения 

𝑦 = 𝐶1 + 𝐶2𝑒
−2𝑥 −

1

2
𝑥 +

2

3
𝑒𝑥 +

2

5
𝑐𝑜𝑠 𝑥 +

1

5
𝑠𝑖𝑛 𝑥. 

 

Задание 37. Установите соответствие между дифференциальным уравне-

нием  

1) 𝑦″ − 5𝑦′ + 4𝑦 = 2 − 3𝑥 + 2𝑥2 2) 𝑦″ + 6𝑦′ = 4 + 3𝑥 + 𝑥2 

3) 𝑦″ + 3 = 6 − 4𝑥 + 2𝑥2 
и общим видом его частного решения … 

A) 𝑦∗(𝑥) = (𝐶0 + 𝐶1𝑥 + 𝐶2𝑥
2)𝑥 B) 𝑦∗(𝑥) = (𝐶0 + 𝐶1𝑥 + 𝐶2𝑥

2)𝑥2 
C) 𝑦∗(𝑥) = 𝐶0𝑥 + 𝐶1𝑥

2 D) 𝑦∗(𝑥) = (𝐶0𝑥 + 𝐶1𝑥
2)𝑥 

E) 𝑦∗(𝑥) = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥
2 

Решение. Вид частного решения устанавливается по виду правой части 

дифференциального уравнения и корней соответствующего характеристическо-

го уравнения. Правая часть исходных уравнений f(x) = P2(x) – многочлен второ-

го порядка. В этом случае частное решение y* ищем в виде  

y* = Q2(x), если число 0 не является корнем характеристического уравнения, и в 

виде y* = xsQ2(x), если число 0 является корнем характеристического уравнения 

кратности s. 

1. Рассмотрим первое уравнение 𝑦″ − 5𝑦′ + 4𝑦 = 2 − 3𝑥 + 2𝑥2. Составим 

характеристическое уравнение для соответствующего однородного дифферен-

циального уравнения  𝑦″ − 5𝑦′ + 4𝑦 = 0: 𝑘2 − 5𝑘 + 4 = 0. Находим его корни:  

𝑘1 = 1, 𝑘2 = 4. Среди корней 0 нет, поэтому частное решение имеет вид 

𝑦∗(𝑥) = 𝑄2(𝑥) = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥
2.  

2. Характеристическое уравнение 𝑘2 + 6𝑘 = 0 однородного дифференци-

ального уравнения, соответствующего второму уравнению 𝑦″ + 6𝑦′ = 4 + 3𝑥 +
𝑥2, имеет корни: 𝑘1 = 0,  𝑘2 = −6. Число 0 является корнем характеристиче-

ского уравнения, поэтому частное решение имеет вид 𝑦∗(𝑥) = (𝐶0 + 𝐶1𝑥 +
𝐶2𝑥

2)𝑥. 

3. Перенесем число 3 в правую часть. Написав характеристическое урав-

нение 𝑘2 = 0, находим его корни 𝑘1 = 𝑘2 = 0.  Так как число 0 является корнем 

кратности 2, то частное решение имеет вид 𝑦∗(𝑥) = (𝐶0 + 𝐶1𝑥 + 𝐶2𝑥
2)𝑥2. 

Ответ: 1 – E, 2 – A, 3 – B. 
 

Задание 38. Общим решением линейного однородного дифференциаль-

ного уравнения с постоянными коэффициентами и характеристическими кор-

нями 𝑘1 = 𝑘2 = 3,    𝑘3 = −1 является … 

1) 𝑦 = (𝐶1 + 𝐶2𝑥)𝑒
3𝑥 + 𝐶3𝑒

−𝑥, 

2) 𝑦 = 𝐶1 𝑠𝑖𝑛 3 𝑥 + 𝐶2 𝑐𝑜𝑠 3 𝑥 − 𝐶3 𝑠𝑖𝑛 𝑥 + 𝐶4 𝑐𝑜𝑠 𝑥, 
3) 𝑦 = (𝐶1 + 𝐶2𝑥) 𝑠𝑖𝑛 3 𝑥 + (𝐶3 + 𝐶4𝑥) 𝑐𝑜𝑠 3 𝑥 + 𝐶5𝑒

−𝑥, 
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4) 𝑦 = 𝐶1𝑒
3𝑥 + 𝐶2𝑒

−𝑥. 

Решение. Действительное число 3 является двукратным корнем, поэтому 

линейно независимыми частными решениями служат 𝑒−𝑥,𝑒3𝑥, 𝑥𝑒3𝑥. Общее ре-

шение имеет вид 𝑦 = (𝐶1 + 𝐶2𝑥)𝑒
3𝑥 + 𝐶3𝑒

−𝑥. 

Ответ: 1). 

 

2.5. Метод вариации произвольных постоянных (метод Лагранжа) 

 

Этот метод применяется для отыскания частного решения 𝑦∗ линейного 

неоднородного уравнения, когда известно общее решение соответствующего 

линейного однородного уравнения. Пусть дано линейное неоднородное уравне-

ние второго порядка 𝑦″ + 𝑝𝑦′ + 𝑞𝑦 = 𝑓(𝑥) и пусть общим решением соответ-

ствующего однородного уравнения 𝑦″ + 𝑝𝑦′ + 𝑞𝑦 = 0 является функция 

𝑌 = 𝐶1𝑦1 + 𝐶2𝑦2. 
В такой же форме ищется и частное решение 𝑦∗ линейного неоднородного 

уравнения, только 𝐶1 и 𝐶2 считаются не произвольными постоянными, а некото-

рыми, пока неизвестными функциями от 𝑥, т. е. 𝑦∗ = 𝐶1(𝑥)𝑦1 + 𝐶2(𝑥)𝑦2. Диф-

ференцируя это выражение дважды и подставляя его в исходное уравнение, по-

лучим систему двух уравнение относительно 𝐶1(𝑥) и 𝐶2(𝑥) 

{
𝐶1
′𝑦1 + 𝐶2

′𝑦2 = 0,

𝐶1
′𝑦1

′ + 𝐶2
′𝑦2

′ = 𝑓(𝑥).
 

Интегрируя найденные значения, получим: 𝐶1(𝑥) = ∫𝜙1(𝑥)𝑑𝑥 и 𝐶2(𝑥) =

∫𝜙2(𝑥)𝑑𝑥. При этих значениях 𝐶1(𝑥) и 𝐶2(𝑥) получим частное решение 

𝑦∗ = 𝐶1(𝑥)𝑦1 + 𝐶2(𝑥)𝑦2. 
 

Задание 39. Найдите общее решение уравнения 𝑦″ + 4𝑦 =
1

𝑠𝑖𝑛 2𝑥
.  

Решение. Характеристическое уравнение 𝑘2 + 4 = 0 имеет корни 

𝑘1,2 = ±2𝑖. Значит, 𝑌 = 𝐶1 𝑐𝑜𝑠 2 𝑥 + 𝐶2 𝑠𝑖𝑛 2 𝑥. Будем искать частное решение в 

форме 𝑦∗ = 𝐶1(𝑥) 𝑐𝑜𝑠 2 𝑥 + 𝐶2(𝑥) 𝑠𝑖𝑛 2 𝑥. Находим 𝐶1
′(𝑥) и 𝐶2

′(𝑥), решая систе-

му уравнений 

{
𝐶1
′𝑐𝑜𝑠2𝑥 + 𝐶2

′𝑠𝑖𝑛2𝑥 = 0,

−2𝐶1
′𝑠𝑖𝑛2𝑥 + 2𝐶2

′𝑐𝑜𝑠2𝑥 =
1

𝑠𝑖𝑛 2 𝑥
.
 

∆= |
𝑐𝑜𝑠 2 𝑥 𝑠𝑖𝑛 2 𝑥
−2 𝑠𝑖𝑛 2 𝑥 2 𝑐𝑜𝑠 2 𝑥

| = 2𝑐𝑜𝑠22𝑥 + 2𝑠𝑖𝑛22𝑥 = 2, 

∆1= |
0 𝑠𝑖𝑛 2 𝑥
1

𝑠𝑖𝑛 2𝑥
2 𝑐𝑜𝑠 2 𝑥| = −1,   ∆2= |

𝑐𝑜𝑠 2 𝑥 0

−2 𝑠𝑖𝑛 2 𝑥
1

𝑠𝑖𝑛 2𝑥

| =
𝑐𝑜𝑠 2𝑥

𝑠𝑖𝑛 2𝑥
. 

𝐶1
′ =
∆1
∆
= −

1

2
,   𝐶2

′ =
∆2
∆
=
𝑐𝑜𝑠 2 𝑥

2 𝑠𝑖𝑛 2 𝑥
. 

 

Интегрируя без C, находим: 𝐶1 = −
1

2
𝑥,   𝐶2 =

1

4
𝑙𝑛𝑠𝑖𝑛 2 𝑥. Следовательно, 

𝑦∗ = −
1

2
𝑥 𝑐𝑜𝑠 2 𝑥 +

1

4
𝑠𝑖𝑛 2 𝑥 𝑙𝑛𝑠𝑖𝑛 2 𝑥.  
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Общее решение 

𝑦 = 𝐶1 𝑐𝑜𝑠 2 𝑥 + 𝐶2 𝑠𝑖𝑛 2 𝑥 −
1

2
𝑥 𝑐𝑜𝑠 2 𝑥 +

1

4
𝑠𝑖𝑛 2 𝑥 𝑙𝑛𝑠𝑖𝑛 2 𝑥. 

 

§ 3. Системы обыкновенных дифференциальных уравнений 

 

Рассмотрим систему двух линейных дифференциальных уравнений с по-

стоянными коэффициентами 

{

𝑑𝑥

𝑑𝑡
= 𝑎11𝑥 + 𝑎12𝑦,

𝑑𝑦

𝑑𝑡
= 𝑎21𝑥 + 𝑎22𝑦.

 

Дифференцируем первое уравнение по t, далее подставляем во второе 

уравнения выраженные правые части y и y’, получаем дифференциальное урав-

нение второго порядка 

𝑥" − 𝑑 ∙ 𝑥′ + ∆ ∙ 𝑥 = 0, 
где 𝑑 = 𝑎11 + 𝑎22, 

∆= |
𝑎11 𝑎12
𝑎21 𝑎22

|. 

 

Задание 40. Найдите общее решение системы уравнений 

{

𝑑𝑥

𝑑𝑡
= 7𝑥 + 5𝑦,

𝑑𝑦

𝑑𝑡
= 𝑥 + 3𝑦.

 

Решение. Найдем d и ∆ 

𝑑 = 7 + 3 = 10,   ∆= |
7 5
1 3

| = 21 − 5 = 16. 

Получим дифференциальное уравнение второго порядка 

𝑥" − 10𝑥′ + 16𝑥 = 0. 
Найдем корни характеристического уравнения 

𝑘1,2 =
10 ± √100 − 64

2
= [
2,
8.

 

Общее решение дифференциальное уравнение второго порядка 

𝑥 = 𝐶1𝑒
2𝑡 + 𝐶2𝑒

8𝑡 . 
Дифференцируем полученное равенство по t и подставляем результат в 

первое уравнение системы 

2𝐶1𝑒
2𝑡 + 8𝐶2𝑒

8𝑡 = 7𝐶1𝑒
2𝑡 + 7𝐶2𝑒

8𝑡 + 5𝑦, 
𝑦 = −𝐶1𝑒

2𝑡 + 0,2𝐶2𝑒
8𝑡 . 

Общее решение системы дифференциальных уравнений 

{
𝑥 = 𝐶1𝑒

2𝑡 + 𝐶2𝑒
8𝑡 ,

𝑦 = −𝐶1𝑒
2𝑡 + 0,2𝐶2𝑒

8𝑡 .
 



29 

Общее решение иногда записывают в матричной форме X = AC, где 

𝑋 = (
𝑥
𝑦) , 𝐴 = (

1 1
−1 0,2

) , 𝐶 = (
𝐶1𝑒

2𝑡

𝐶2𝑒
8𝑡). 

 

Одной из простейших моделей кинетического типа является модель во-

енных действий Ланкастера. Уравнения модели Ланкастера имеют следующий 

вид: 

{

𝑑𝑥

𝑑𝑡
= −𝛼𝑦,

𝑑𝑦

𝑑𝑡
= −𝛽𝑥.

 

Смысл этой модели состоит в следующем. Воюют две армии численно-

стью 𝑥(𝑡) и 𝑦(𝑡). Каждый солдат первой армии за единицу времени уничтожает 

𝛽 солдат второй армии, так что ее численность за единицу времени уменьшает-

ся на 𝛽𝑥(𝑡). В то же время каждый солдат второй армии уничтожает 𝛼 солдат 

первой армии так, что ее численность за единицу времени убывает на величину 

𝛼𝑦(𝑡). 
 

Задание 41. Каждый солдат первой армии за один день в среднем уни-

чтожает 0,4 солдата второй армии, а каждый солдат второй армии за один день в 

среднем уничтожает 0,1 солдата первой армии. В начальный момент в первой 

армии было 1000 солдат, а во второй 3000 солдат. Определить количество сол-

дат в каждой армии через 5 дней. 

Решение. Составим систему уравнений 

{

𝑑𝑥

𝑑𝑡
= −0,1𝑦,

𝑑𝑦

𝑑𝑡
= −0,4𝑥.

 

Продифференцируем первое уравнение по t и подставим во второе урав-

нение 

−10𝑥" + 0,4𝑥 = 0. 
Корни характеристического уравнения 

−10𝑘2 + 0,4 = 0 

равны 𝑘1,2 = ±0,2. Тогда  

𝑥 = 𝐶1𝑒
0,2𝑡 + 𝐶2𝑒

−0,2𝑡 . 
Дифференцируем полученное равенство по t и подставляем результат в 

первое уравнение системы 

0,2𝐶1𝑒
0,2𝑡−0,2𝐶2𝑒

−0,2𝑡 = −0,1𝑦, 
𝑦 = −2𝐶1𝑒

0,2𝑡 + 2𝐶2𝑒
−0,2𝑡 . 

Общее решение системы дифференциальных уравнений 

{
𝑥 = 𝐶1𝑒

0,2𝑡 + 𝐶2𝑒
−0,2𝑡 ,

𝑦 = −2𝐶1𝑒
0,2𝑡 + 2𝐶2𝑒

−0,2𝑡 .
 

Используя начальные условия, найдем C1 и C2 
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{
1000 = 𝐶1 + 𝐶2,

3000 = −2𝐶1 + 2𝐶2.
 

Откуда 𝐶1 = −250, 𝐶2 = 1250, 

{
𝑥 = −250𝑒0,2𝑡 + 1250𝑒−0,2𝑡 ,

𝑦 = 500𝑒0,2𝑡 + 2500𝑒−0,2𝑡 .
 

Через пять дней численность первой армии x = -219. Следовательно, сра-

жение закончится при x = 0, т. е. через 𝑡 = 2,5𝑙𝑛5 ≈ 4 дня. Численность второй 

армии составит 403 солдата. 

 

§ 4. Задачи для самостоятельного решения 

 

1. Найдите общие интегралы уравнений: 

1. (𝑦 + 2)2𝑑𝑥 − (𝑥 + 1)3𝑑𝑦 = 0. 2. 5𝑦𝑦′ + 4𝑥 = 2. 
3. 𝑦2𝑑𝑥 − 𝑥𝑑𝑦 = 0. 4. 𝑒2𝑦𝑦′ + 𝑒−𝑥 = 𝑠𝑖𝑛5𝑥. 
5. 2𝑥𝑦𝑦′ + 𝑥 = 1. 6. (2𝑥 + 5)𝑦′ = 2𝑦. 

2. Найдите частные интегралы уравнений при указанных начальных 

условиях: 

1. 𝑦′ + 4𝑦 = 1;  y(0) = 5. 2. 𝑠3𝑑𝑠 − 𝑑𝑡 = 𝑐𝑜𝑠2𝑡𝑑𝑡; s(0) = 2. 

3. Согласно опытам в течение года из каждого грамма радия распадается 

0,44 мг. Через сколько лет распадется десятая часть имеющегося радия. 

4. Тело охладилось за 10 мин от 80 до 50 °C. Температура окружающей 

среды поддерживается равной 20 °C. Сколько еще минут понадобится, чтобы 

тело охладилось до 35 °C? 

5. Поглощение светового потока тонким листом стекла пропорционально 

толщине листа и потоку, падающему на его поверхность. Зная, что при про-

хождении через слой 1 мм поглощается 2% первоначального светового потока 

F0, определить, какой процент поглощается листом стекла толщиной 8 мм. 

6. В цепь последовательно включены резистор сопротивлением 500 Ом и 

конденсатор емкостью 2 мкФ, заряд которого в момент замыкания цепи равен 5 

Кл. Найти силу тока в цепи в момент ее замыкания и через тысячную долю се-

кунды после замыкания. 

7. Найдите уравнение кривой, проходящей через точку (4; 6) и обладаю-

щей свойством, что угловой коэффициент любой касательной вдвое меньше уг-

лового коэффициента радиуса-вектора точки касания. 

8. Проинтегрировать следующие уравнения: 

1. 𝑦𝑑𝑥 − 𝑥𝑑𝑦 = 𝑥𝑑𝑥;  𝑦(1) = 2. 2. 2𝑥2 + 𝑦2 − 𝑥𝑦𝑦′ = 0. 

3. 𝑥𝑦′ − 𝑦 = 2√𝑥2 + 𝑦2. 4. (𝑥 + 𝑦)𝑑𝑥 = (𝑥 − 𝑦)𝑑𝑦. 
9. Решить уравнения: 

1. 𝑦′ − 3𝑦 = 𝑒2𝑥. 2. 𝑥𝑦′ − 𝑦 = −𝑥2;  𝑦(1) = 0. 

3. 𝑥𝑦′ − 𝑦 = 𝑥𝑦2;  𝑦(1) = −2. 4. 𝑦′ + 𝑦 = 𝑥√𝑦. 

5. 𝑦′ − 2𝑥𝑦 = 𝑒𝑥
2
;  𝑦(1) = 1. 6. 𝑥𝑦′ + 𝑦 = 𝑦2𝑙𝑛𝑥. 

10. В цепь последовательно включены источник напряжения 

𝑈 = 100𝑠𝑖𝑛50𝑡, сопротивление 2 Ом и индуктивность 0,4 Гн. Найти амплитуду 

силы тока в цепи при установившемся режиме. 
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11. Решить уравнения: 

1. (2𝑦 − 4)𝑑𝑥 + (2𝑥 + 3𝑦)𝑑𝑦 = 0. 2. (1 + 2𝑥𝑦)𝑑𝑥 + 2𝑥2𝑑𝑦 = 0. 
3. (2𝑥 − 3𝑦)𝑑𝑥 − (3𝑥 + 4𝑦)𝑑𝑦 = 0. 4. 𝑥𝑒2𝑦𝑑𝑥 + (𝑦 + 𝑥2𝑒2𝑦)𝑑𝑦. 

 

12. Решить уравнения: 

1. 𝑦′′′ − 𝑒2𝑥 = 𝑐𝑜𝑠3𝑥. 2. 𝑦′′ = 2𝑥;   𝑦(0) = 3, 𝑦′(0) = 1. 
3. 𝑦′′𝑡𝑔2𝑥 = 2𝑦′. 4. 𝑦′′𝑦3 + 36 = 0;   𝑦(0) = 3, 𝑦′(0) = 2. 

5. 𝑦′′ = 𝑥𝑒−𝑥 − 𝑠𝑖𝑛2𝑥 + √𝑥 + 1. 6. 𝑦′′ +
𝑦′

𝑥
= 0. 

7. 𝑦′′𝑦 = (𝑦′)2. 8. 𝑦′′𝑥 + 𝑦′ = 10. 
13. Горизонтально расположенная консольная стальная балка длиной 

l = 6 м закреплена с одной стороны и нагружена сосредоточенной силой 

P = 1 т с другой стороны. Найдите уравнение упругой линии (кривой изгиба) и 

определить величину прогиба балки, если модуль упругости E = 2,1·1010 кг/м2, 

момент инерции J = 0,004 м4. 

Примечание. Радиус кривизны R упругой линии для балки 𝑅 =
𝐸𝐽

𝑀(𝑥)
, где 

M(x) = P(l – x) – изгибающий момент. При малых отклонениях принять 

1 + (𝑦′)3/2 ≈ 1. 

14. Решить уравнения: 

1. 𝑦′′ + 5𝑦′ − 6𝑦 = 0. 2. 
𝑑2𝑆

𝑑𝑡2
− 6

𝑑𝑆

𝑑𝑡
+ 9𝑆 = 0. 

3. 𝑦′′′ + 6𝑦′′ + 13𝑦′ = 0. 4. 𝑦′′ + 2𝑦′ = 0;   𝑦(0) = 1, 𝑦′(0) = 1. 
15. Найдите закон движения и определить период T колебания математи-

ческого маятника длиной l = 30 см при малых колебаниях. 

Примечание. При малых колебаниях принять 𝑠𝑖𝑛𝛼 ≈ 𝛼, 𝛼 =
𝑠

𝑙
, где 

s – длина, пройденная грузом по окружности. 

16. Решить уравнения: 

1. 𝑦′′ − 4𝑦′ + 4𝑦 = 2𝑒2𝑥. 2. 𝑦′′ + 4𝑦 = 8𝑥;  𝑦(0) = 0, 𝑦′(0) = 4. 
3. 𝑦′′ + 6𝑦′ + 13𝑦 = 30𝑠𝑖𝑛𝑥. 4. 𝑦′′′ − 𝑦′ = −2𝑥. 
5. 𝑦′′ + 𝑦′ = 𝑥 + 𝑠𝑖𝑛𝑥. 6. 𝑦′′ + 𝑦 = 𝑒𝑥 + 𝑐𝑜𝑠𝑥. 
7. 𝑦′′′ − 3𝑦′ − 2𝑦 = −4𝑥𝑒𝑥. 8. 𝑦′′ − 3𝑦′ = 2 − 6𝑥;  𝑦(0) = 3, 𝑦′(0) = 3. 

17. Решить уравнения: 

1. 𝑦′′ + 𝑦 =
1

𝑠𝑖𝑛𝑥
. 2. 𝑦′′ − 2𝑦′ + 𝑦 =

𝑒𝑥

𝑥
. 

3. 𝑦′′ + 𝑦 = 5𝑐𝑜𝑠2𝑥. 4. 𝑦′′ + 𝑦 =
1

𝑐𝑜𝑠3𝑥
. 

5. 
𝑑3𝑥

𝑑𝑡3
+
𝑑2𝑥

𝑑𝑡2
= 𝑒−𝑡 + 6𝑡. 6. 𝑦′′ + 16𝑦 = 𝑠𝑖𝑛3𝑥. 

18. Моторная лодка движется в спокойной воде со скоростью 12 км/ч. На 

полном ходу ее мотор был выключен, и через 10 сек скорость лодки уменьши-

лась до 6 км/ч. Определить путь, пройденный лодкой за 1 мин с момента вы-

ключения мотора, считая, что сопротивление воды пропорционально квадрату 

скорости движения лодки. 

 

 

 



32 

19. Найдите общее решение системы уравнений: 

1. {

𝑑𝑥

𝑑𝑡
= 3𝑥 + 𝑦,

𝑑𝑦

𝑑𝑡
= 8𝑥 + 𝑦.

 2. {

𝑑𝑥

𝑑𝑡
= 2𝑥 − 𝑦,

𝑑𝑦

𝑑𝑡
= 2𝑥 + 4𝑦.

 

20. Найдите частное решение системы уравнений, удовлетворяющее ука-

занным условиям: 
𝑑𝑥

𝑑𝑡
+ 3𝑥 + 𝑦 = 0,

𝑑𝑦

𝑑𝑡
− 𝑥 + 𝑦 = 0;    𝑥(0) = 1, 𝑦(0) = −1.   

 

Приложение 

 

Комплексным числом z называют выражение: 𝑧 = 𝑎 + 𝑖 ⋅ 𝑏, где а и b – 

действительные числа; i – мнимая единица, определяемая равенством: 

𝑖2 = −1. 

Выражение 𝑧 = 𝑎 + 𝑖 ⋅ 𝑏 называют алгебраической формой записи ком-

плексного числа, а называется действительной частью числа z, 

b – мнимой частью. Их обозначают так: 𝑎 = 𝑅𝑒 𝑧 ;  𝑏 = 𝐼𝑚 𝑧 (от французско-

го reèl - действительный, imaginiare - мнимый). 

Если а = 0, то число z = ib называется чисто мнимым. 

Если b = 0, то получается действительное число z = а. 

Два комплексных числа, отличающиеся только знаком мнимой части, 

называются сопряженными: 𝑧 = 𝑎 + 𝑖 ⋅ 𝑏 , 𝑧̅ = 𝑎 − 𝑖 ⋅ 𝑏. 

Пусть комплексному числу 𝑧 = 𝑎 + 𝑖 ⋅ 𝑏 соответствует вектор 𝑂𝐴
→  

 с коор-

динатами (a; b) (рис. 1). Обозначим длину вектора |𝑂𝐴
→  
| = 𝑟, а угол, который он 

образует с осью OX, через 𝜑 (угол 𝜑 считается положительным, если он отсчи-

тывается против часовой стрелки, и отрицательным в противном случае). 

По определению синуса и косинуса 
𝑎

𝑟
= 𝑐𝑜𝑠 𝜑, 

𝑏

𝑟
= 𝑠𝑖𝑛𝜑

 
⇒ 

𝑎 = 𝑟 ⋅ 𝑐𝑜𝑠 𝜑 , 𝑏 = 𝑟 ⋅ 𝑠𝑖𝑛 𝜑. Комплексное число 𝑎 + 𝑏𝑖 можно записать в виде 

𝑎 + 𝑏𝑖 = 𝑟 ⋅ 𝑐𝑜𝑠 𝜙 + 𝑖 ⋅ 𝑟 ⋅ 𝑠𝑖𝑛 𝜑 = 𝑟(𝑐𝑜𝑠 𝜑 + 𝑖 ⋅ 𝑠𝑖𝑛 𝜑). 
 

 
y 

x 

φ 

b 

a O 

A 

Рис. 1 

 
Любое комплексное число 𝑎 + 𝑖𝑏 можно представить в тригонометриче-

ской форме: 𝑎 + 𝑖𝑏 = 𝑟(𝑐𝑜𝑠 𝜑 + 𝑖 ⋅ 𝑠𝑖𝑛 𝜑), где 𝑟 = √𝑎2 + 𝑏2, а угол 𝜑 отличного 

от нуля комплексного числа определяется из условия 
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{
𝑠𝑖𝑛 𝜑 =

𝑏

√𝑎2+𝑏2

𝑐𝑜𝑠 𝜑 =
𝑎

√𝑎2+𝑏2

          или    𝑡𝑔𝜑 =
𝑏

𝑎
   с учетом знаков a и b. 

Число r называется модулем |𝑧|, а угол 𝜑 – аргументом (𝑎𝑟𝑔 𝑧) ком-

плексного числа 𝑧 = 𝑎 + 𝑖𝑏. 

Значение аргумента 𝜑, заключенное в промежутке (-π; π] называется 

главным значением аргумента и обозначается arg z (в качестве главного зна-

чения аргумента иногда берут величину, заключенную в промежутке 

[0; 2π)). 

Всякое комплексное число можно представить также в показательной 

форме: 

𝑧 = 𝑟 ⋅ 𝑒𝑖𝜑 , 
где 𝑒𝑖𝜑 = 𝑐𝑜𝑠 𝜑 + 𝑖 ⋅ 𝑠𝑖𝑛 𝜑 - формула Эйлера. 

 

Задание 1. Представьте комплексное число 𝑧 = −1 − 𝑖√3 в показатель-

ной форме. 

Решение. Найдем модуль заданного комплексного числа 

𝑟 = |𝑧| = √𝑎2 + 𝑏2 = √(−1)2 + (√3)2 = √4 = 2. 

Комплексное число находится в третьей четверти, его аргумент равен 

𝜑 = 𝜋 + 𝑎𝑟𝑐𝑡𝑔√3 = 𝜋 +
𝜋

3
=
4𝜋

3
= 240°. 

Ответ: 2𝑒𝑖240° 
 

Задание 2. Найдите модуль комплексного числа 5 − 12𝑖. 
Решение: 

Модуль комплексного числа 𝑧 = 𝑎 + 𝑖𝑏 определяется по формуле  

|𝑧| = √𝑎2 + 𝑏2. В нашем случае 𝑎 = 5, 𝑏 = −12, |𝑧| = √52 + (−12)2 = 13. 

Ответ: 13. 

 

Задание 3. Представьте комплексное число z = -8 +6i в показательной 

форме. 

Решение. Модуль комплексного числа равен 

𝑟 = |𝑧| = √(−8)2 + 62 = 10. 
Комплексное число z находится во второй четверти, его аргумент равен 

𝜑 = 𝜋 − 𝑎𝑟𝑐𝑡𝑔
6

8
≈ 180° − 36,9° = 143,1°. 

Ответ: 𝑧 ≈ 10𝑒143,1°𝑖. 
 

Операции над комплексными числами 

 

При сложении (вычитании) комплексных чисел, записанных в алгебраи-

ческой форме, складываются (вычитаются) их действительные и мнимые части: 
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𝑧1 + 𝑧2 = (𝑎1 + 𝑖 ⋅ 𝑏1) + (𝑎2 + 𝑖 ⋅ 𝑏2) = (𝑎1 + 𝑎2) + 𝑖 ⋅ (𝑏1 + 𝑏2), 
𝑧1 − 𝑧2 = (𝑎1 + 𝑖 ⋅ 𝑏1) − (𝑎2 + 𝑖 ⋅ 𝑏2) = (𝑎1 − 𝑎2) + 𝑖 ⋅ (𝑏1 − 𝑏2). 

При сложении комплексных чисел их радиусы-векторы складываются (по 

правилу параллелограмма), рис 2. 

 
 

 

Рис. 2 

 
 

Умножение комплексных чисел, записанных в алгебраической форме, 

производится как умножение многочленов с последующей заменой 𝑖2 на  

(–1). 

При делении комплексных чисел, записанных в алгебраической форме, 

можно делимое и делитель умножить на число, сопряженное с делителем, а 

умножение комплексных чисел производить как умножение многочленов: 
𝑎1 + 𝑏1𝑖

𝑎2 + 𝑏2𝑖
=
(𝑎1 + 𝑏1𝑖)(𝑎2 − 𝑏2𝑖)

(𝑎2 + 𝑏2𝑖)(𝑎2 − 𝑏2𝑖)
=
𝑎1𝑎2 + 𝑏1𝑏2

𝑎2
2 + 𝑏2

2 + 𝑖
𝑏1𝑎2 − 𝑎1𝑏2

𝑎2
2 + 𝑏2

2 . 

Действия над комплексными числами подчиняются тем же законам, что и 

действия над действительными числами, поэтому формулы сокращенного 

умножения автоматически сохраняются для комплексных чисел. 

При умножении (делении) комплексных чисел, записанных в тригоно-

метрической форме, умножаются (делятся) их модули и складываются (вычи-

таются) их аргументы: 

𝑧1 ⋅ 𝑧2 = 𝑟1𝑟2(𝑐𝑜𝑠(𝜑1 + 𝜑2) + 𝑖 ⋅ 𝑠𝑖𝑛(𝜑1 + 𝜑2)), 
𝑧1
𝑧2
=
𝑟1
𝑟2
(𝑐𝑜𝑠(𝜑1 − 𝜑2) + 𝑖 ⋅ 𝑠𝑖𝑛(𝜑1 − 𝜑2)). 

Аналогично для комплексных чисел, записанных в показательной форме 

𝑧1 ⋅ 𝑧2 = 𝑟1𝑟2𝑒
𝑖(𝜑1+𝜑2),

𝑧1
𝑧2
=
𝑟1
𝑟2
𝑒𝑖(𝜑1−𝜑2). 

Складывать и вычитать комплексные числа удобнее, когда они заданы в 

алгебраической форме, а умножать и делить удобнее в тригонометрической или 

показательной форме. 

При возведении комплексного числа в целую положительную степень n 

удобно число записать в тригонометрической форме 𝑧 = 𝑟(𝑐𝑜𝑠 𝜑 + 𝑖 ⋅ 𝑠𝑖𝑛 𝜑). Тогда 

𝑧𝑛 = 𝑟𝑛(𝑐𝑜𝑠 𝑛 𝜑 + 𝑖 𝑠𝑖𝑛 𝑛𝜑)  – формула Муавра. 

Корнем n-й степени из комплексного числа называется такое комплекс-

ное число, n-я степень которого равняется подкоренному числу, т. е. 

√𝑧
𝑛
= √𝑟(𝑐𝑜𝑠𝜑 + 𝑖 𝑠𝑖𝑛 𝜑)

𝑛
= 𝜌(𝑐𝑜𝑠𝜓 + 𝑖 𝑠𝑖𝑛 𝜓), 
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если 𝜌𝑛(𝑐𝑜𝑠 𝑛 𝜓 + 𝑖 𝑠𝑖𝑛 𝑛𝜓) = 𝑟(𝑐𝑜𝑠 𝜑 + 𝑖 𝑠𝑖𝑛 𝜑). 

Следовательно, 𝜌𝑛 = 𝑟,  𝜌 = √𝑟
𝑛

; 𝑛𝜓 = 𝜑 + 2𝜋𝑘,  𝜓 =
𝜑+2𝜋𝑘

𝑛
. 

√𝑟(𝑐𝑜𝑠 𝜑 + 𝑖 𝑠𝑖𝑛 𝜑)
𝑛 = √𝑟

𝑛
(𝑐𝑜𝑠

𝜑+2𝜋𝑘

𝑛
+ 𝑖 𝑠𝑖𝑛

𝜑+2𝜋𝑘

𝑛
) ,  𝑘 = 0, 𝑛 − 1. 

Корень n-й степени из любого комплексного числа 𝑧 ≠ 0 имеет ровно n 

значений. 

 

Задание 6. Даны два комплексных числа  𝑧1 = 5 + 3𝑖 и 𝑧2 = 2 − 4𝑖. 
Найдите произведение 𝑧1 ⋅ 𝑧2. 

Решение. 𝑧1 ⋅ 𝑧2 = (5 + 3𝑖)(2 − 4𝑖) = 10 − 20𝑖 + 6𝑖 − 12𝑖
2 = 

= 10 − 14𝑖 − 12 ⋅ (−1) = 22 − 14𝑖. 
Ответ: 𝑧1 ⋅ 𝑧2 = 22 − 14𝑖. 
 

Задание 7. Даны два комплексных числа  𝑧1 = 4 + 3𝑖 и 𝑧2 = 15 − 8𝑖. 
Найдите частное 𝑧1 𝑧2⁄ . 

Решение. 
4+3𝑖

15−8𝑖
=

(4+3𝑖)(15+8𝑖)

(15−8𝑖)(15+8𝑖)
=
60+32𝑖+45𝑖+24𝑖2

225−64𝑖2
=
36+77𝑖

289
=

36

289
+

77

289
𝑖. 

Ответ: 
𝑧1

𝑧2
=

36

289
+

77

289
𝑖. 

 

Задание 9. Найдите действительную часть комплексного числа  

(3 + 7𝑖)2.  

Решение. Действительной частью комплексного числа 𝑧 = 𝑎 + 𝑖𝑏 называ-

ется действительное число a и обозначается следующим образом: 𝑎 = 𝑅𝑒 𝑧. 
Преобразуем искомое выражение, используя формулу квадрата суммы: 

  (3 + 7𝑖)2 = 9 + 42𝑖 + 49𝑖2 = −40 + 42𝑖, 𝑅𝑒( (3 + 7𝑖)2) = −40. 
Ответ: –40. 

 

Задание 10. Дано комплексное число 𝑧 = 1 + √3𝑖. Найдите 𝑧6. 

Решение. Запишем число 𝑧 = 1 + √3𝑖 в тригонометрической форме: 

1) найдем модуль числа |𝑧| = √12 + (√3)2 = √4 = 2; 

2) комплексное число расположено в первой четверти, поэтому 

𝜑 = 𝑎𝑟𝑐𝑡𝑔√3 =
𝜋

3
. 

Следовательно, по формуле Муавра 

𝑧6 = (1 + √3𝑖)6 = (2)6 (𝑐𝑜𝑠 (6 ⋅
𝜋

3
) + 𝑖 ⋅ 𝑠𝑖𝑛 (6 ⋅

𝜋

3
)) = 

= 64(𝑐𝑜𝑠 2𝜋 + 𝑖 ⋅ 𝑠𝑖𝑛 2𝜋) = 64. 

Ответ: 64. 

 

Задание 11. Найдите корни уравнения 𝑧4 = 1. 

Решение. 𝑧 = √1
4
= √1 ⋅ (𝑐𝑜𝑠 0 + 𝑖 𝑠𝑖𝑛 0)

4  ⇒  𝑟 = 1,  𝜑 = 0. 

По формуле Муавра имеем 
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k = 0, 𝑧0 = √1
4
(𝑐𝑜𝑠

0+2𝜋⋅0

4
+ 𝑖 𝑠𝑖𝑛

0+2𝜋⋅0

4
) = 1 ⋅ 𝑐𝑜𝑠 0 = 1; 

k = 1, 𝑧1 = √1
4
(𝑐𝑜𝑠

0+2𝜋⋅1

4
+ 𝑖 𝑠𝑖𝑛

0+2𝜋⋅1

4
) = 𝑐𝑜𝑠

𝜋

2
+ 𝑖 𝑠𝑖𝑛

𝜋

2
= 𝑖; 

k = 2, 𝑧2 = √1
4
(𝑐𝑜𝑠

0+2𝜋⋅2

4
+ 𝑖 𝑠𝑖𝑛

0+2𝜋⋅2

4
) = 𝑐𝑜𝑠 𝜋 + 𝑖 𝑠𝑖𝑛 𝜋 = −1; 

k = 3, 𝑧3 = √1
4
(𝑐𝑜𝑠

0+2𝜋⋅3

4
+ 𝑖 𝑠𝑖𝑛

0+2𝜋⋅3

4
) = 𝑐𝑜𝑠

3𝜋

2
+ 𝑖 𝑠𝑖𝑛

3𝜋

2
= −𝑖; 

Ответ: 𝑧1,2 = ±1, 𝑧3,4 = ±𝑖. 
 

Задание 12. Найдите корни уравнения 𝑧2 − 4𝑧 + 5 = 0. 

Решение. Найдем дискриминант квадратного уравнения 𝑎𝑧2 + 𝑏𝑧 + 𝑐 = 0 

по формуле 𝐷 = 𝑏2 − 4𝑎𝑐, 𝐷 = (−4)2 − 4 ∙ 5 = 16 − 20 = −4 = (2𝑖)2. 

Найдем корни уравнения по формуле 𝑧1,2 =
−𝑏±√𝐷

2𝑎
, 

𝑧1,2 =
−(−4) ± 2𝑖

2
= 2 ± 𝑖. 

Ответ: 𝑧1,2 = 2 ± 𝑖. 
 

Задание 13. Найдите корни уравнения 𝑧2 − 2𝑧 + 4 = 0 и представьте их в 

показательной форме. 

Решение. Найдем дискриминант квадратного уравнения 𝑎𝑧2 + 𝑏𝑧 + 𝑐 = 0 

по формуле 𝐷 = 𝑏2 − 4𝑎𝑐, 𝐷 = (−2)2 − 4 ∙ 4 = 4 − 16 = −12 = (2√3𝑖)
2
. 

Найдем корни уравнения по формуле 𝑧1,2 =
−𝑏±√𝐷

2𝑎
, 

𝑧1,2 =
−(−2) ± 2√3𝑖

2
= 1 ± √3𝑖. 

 |𝑧1| = |𝑧2| = √1
2 + (√3)2 = √4 = 2. 

Первый корень уравнения 𝑧1 = 1 − √3𝑖 находится в четвертой четверти, а 

второй корень уравнения 𝑧2 = 1 + √3𝑖 находится в первой четверти, поэтому 

𝜑1 = 2𝜋 − 𝑎𝑟𝑐𝑡𝑔√3 = 2𝜋 −
𝜋

3
=
5𝜋

3
, 𝜑2 = 𝑎𝑟𝑐𝑡𝑔√3 =

𝜋

3
. 

 

Ответ: 𝑧1 = 2𝑒
𝑖
5𝜋

3 , 𝑧2 = 2𝑒
𝑖
𝜋

3  

 

 

 


