Аксиомы, теоремы и формулы теории вероятностей

{ σ-алгебра - поле случайных событий - первая группа аксиом Колмогорова - вторая группа аксиом Колмогорова - основные формулы теории вероятностей - теорема сложения вероятностей - условная вероятность и теорема умножения – примеры – независимые события – формула полной вероятности – формула Байеса }

Аксиоматика Колмогорова

Колмогоров А. Н. Основные понятия теории вероятностей. М., ГНТИ, 1936.

Колмогоров Андрей Николаевич (1903-1987)

σ - алгебра событий

Множество Ψ состоящее из подмножеств множества Ω , называется σ - алгеброй событий, если выполнены следующие условия

Первая группа аксиом Колмогорова

Аксиома 1

Аксиома 2

Если $A \in \Psi$, то $\overline{A} \in \Psi$ (вместе с любым событием σ -алгебра содержит противоположное событие)

Аксиома 3

Если A_1 , A_2 , A_3 , $\in \Psi$, то $\bigcup_{i=1}^{N} \overline{A_i} \in \Psi$ (вместе с любым конечным или счетным набором событий σ -алгебра содержит их объединение)

Первая группа аксиом Колмогорова

Этого набора аксиом достаточно для замкнутости множества ψ относительно других операций над событиями.

Свойство 1

 $\Omega \in \Psi$ (σ -алгебра событий содержит невозможное событие) Доказательство

A1:
$$\Omega \in \Psi$$
 \Rightarrow $\emptyset \in \Omega \setminus \Omega = \neg \Omega \in \Psi$ в силу A2

Свойство 2

При выполнении (А1),(А2) свойство (А3) эквивалентно (А4)

$$\bigcap_{j=1}^{\infty} \overline{A_j} \in \Psi$$
 (вместе с любым конечным или счетным набором событий σ -алгебра содержит их пересечение).

Свойство 3

Если
$$A$$
, $B \in \Psi$, то $A \mid B \in \Psi$

 \bigcirc Пусть $\Omega = \{1, 2, 3, 4, 5, 6\}$ - пространство элементарных исходов (например, число выпавших очков при бросании игрального кубика) .

Доказать, что следующие наборы подмножеств Ω являются σ -алгебрами :

$$\Psi = \{ \Omega, \emptyset \} = \{ \{ 1,2,3,4,5,6 \}, \emptyset \}$$

$$\Psi = \{ \Omega, \emptyset, \{1\}, \neg \{1\} \} = \{ \{1,2,3,4,5,6\}, \emptyset, \{1\}, \{2,3,4,5,6\} \}$$

$$\Psi = \{ \Omega, A, \neg A \} = \{ \{ 1, 2, 3, 4, 5, 6 \}, \emptyset, A, \neg A \}$$

Вторая группа аксиом Колмогорова

Пусть Ω - пространство элементарных исходов и Ψ - σ -алгебра его подмножеств (событий).

Вероятностью P или вероятностной мерой μ на (Ω, Ψ) , называется функция $P: \Psi \to R$, удовлетворяющая аксиомам:

Аксиома 1

Для любого события $A \in \Psi$ его вероятностная мера неотрицательна:

P(A) 2 0

Аксиома 2 (аксиома сложения вероятностей)

Для любого счетного набора попарно непересекающихся событий A_1 , A_2 ... $\in \Psi$ вероятностная мера их объединения равна сумме их мер:

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i})$$

Аксиома 3

Вероятностная мера $\mu: \Psi \to R$ называется нормированной, если $\mu(\Omega) = 1$. Вероятность достоверного события $P(\Omega) = 1$.

Тройка (Ω , Ψ ,P), в которой Ω - пространство элементарных исходов, Ψ - σ -алгебра его подмножеств и P- вероятностная мера на Ψ , называется вероятностным пространством.

Свойства и основные соотношения для вероятности:

Вероятность невозможного события равна нулю: ^Р (∅) = 0Доказательство

$$\Omega = \Omega + \emptyset$$
 $\Omega \cap \emptyset = \emptyset$ \Rightarrow по аксиоме 2 второй группы \Rightarrow $P(\Omega) = P(\Omega) + P(\emptyset) \Rightarrow$ используя аксиому 3 второй группы $\Rightarrow P(\emptyset) = \emptyset$

Вероятность противоположного случайного события определяется как :

$$P(\overline{A}) = 1 - P(A)$$

$$P(A + \overline{A}) = P(A) + P(\overline{A}) = 1 \Rightarrow P(\overline{A}) = 1 - P(A)$$

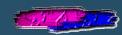
Вероятность всякого события заключена между нулем и единицей

$$0 \leq P(\overline{A}) \leq 1$$

По аксиоме 1 второй группы
$$P(A) \ge 0 \Rightarrow P(\overline{A}) = 1 - P(A) \Rightarrow$$

$$P(A) \geq 0$$
 $P(\overline{A}) \geq 0$ $\Rightarrow 1 - P(\overline{A}) \leq 1$ \Rightarrow $P(A) \leq 1$ \Rightarrow

$$0 \leq P(\overline{A}) \leq 1$$



Если событие A влечет за собой событие B ($A\subseteq B$), то : P (A) \leq P (B)

 $A \subseteq B$ - на языке теории множеств это означает, что любой элементарный исход, входящий в A, является частью множества B.

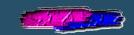
Доказательство

$$B = A + (B \mid A) \Rightarrow$$

так как А ∩ (В | А) = ∅ то по аксиоме 2 второй группы =

$$P(B) = P(A) + P(B \mid A) \Rightarrow P(A) \leq P(B)$$





События A и B равносильны $(A \equiv B)$, если A влечет за собой B и наоборот: $A \subseteq B \mid B \subseteq A$

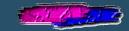
Доказательство

$$A = B \Rightarrow P(A) = P(B)$$

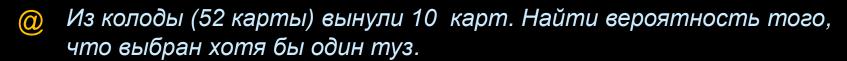
$$A \subseteq B \Rightarrow P(A) \leq P(B)$$

$$B \subseteq A \Rightarrow P(B) \leq P(A)$$

$$A \equiv B$$



Пример



Решение

$$P(A) = \frac{m}{n}$$

Событие 🖊 : тузов в выборке нет

Событие B: есть хотя бы один туз $B = \overline{A}$

10 карт можно выбрать $n = C_{52}^{10}$ числом способов.

Число выборок без тузов: $m = C_{48}^{10}$.

$$P(A) = \frac{C_{48}^{10}}{C_{52}^{10}} \quad P(A) = \frac{48!42!}{38!52!} = \frac{42 \cdot 41 \cdot 40 \cdot 39}{49 \cdot 50 \cdot 51 \cdot 52} = 0.413$$

$$P(B) = P(\overline{A}) = 1 - P(A) = 1 - 0.413 = 0.587$$

Теорема сложения вероятностей

Вероятность суммы событий 🖊 и 📙, находится по формуле:

$$P(A + B) = P(A) + P(B) - P(AB)$$

Доказательство

A U B A + B

A U B = A U (B | AB)

$$P(A \cup B) = P(A) + P(B | AB)$$

$$B = (B | AB) \cup AB$$

$$P(B) = P(B | AB) + P(AB)$$

$$P(A + B) = P(A) + P(B) - P(AB)$$

Теорема сложения вероятностей

Вероятность суммы событий A_1 , A_2 ,, A_n , находится по формуле:

$$P(A_1 \cup A_2 \cup \ldots \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{i < j} P(A_i \cap A_j) +$$

$$+\sum_{i< j< m} P(A_i \cap A_j \cap A_m) - \ldots + (-1)^{n-1} P(A_i \cap \ldots \cap A_n)$$

Условная вероятность и теорема умножения

Условной вероятностью события A, при условии, что произошло событие B, называется число

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \qquad P(B) \neq 0$$

Теорема умножения

 $P(A \cap B) = P(B)P(A|B) = P(A)P(B|A)$, если соответствующие условные вероятности определены (то есть если P(B) > 0, P(A) > 0).

 $P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1) P(A_2 \mid A_1) P(A_3 \mid A_1 \cap A_2)... P(A_n \mid A_1 \cap ... \cap A_{n-1})$ если соответствующие условные вероятности определены.

События A и B называются независимыми, если $P(A \cap B) = P(A) P(B)$

Кубик подбрасывается один раз. Известно, что выпало более трех очков. Какова при этом вероятность того, что выпало четное число очков?

Решение

Пространство элементарных исходов : "выпало более трех очков"

$$B = \{4, 5, 6\}$$

Событие: "выпало четное число очков" $A \mid B = \{4, 6\}$

$$P(A|B) = \frac{|A|B|}{|B|} = \frac{2}{3}$$
 $\Omega = \{1, 2, 3, 4, 5, 6\}$ $B = \{4, 5, 6\}$
 $A|B = \{4, 6\}$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{1/3}{1/2} = \frac{2}{3}$$

Дезависимые события и теорема умножения

События A и B называются независимыми, если $P(A \cap B) = P(A)P(B)$

Если события A и B несовместны, то они независимы, если и только если P(A) = O или P(B) = O.

Если P(B) > 0, то события A и B независимы $P(A \mid B) = P(A)$

Если P(A) > 0, то события A и B независимы P(B|A) = P(B).

Если события 🖊 и B независимы, то независимы события: 🗡 💆 📈 🗸 🧸 🧸 🗷 📙

О События $A_1, A_2, ..., A_n$ называются *независимыми* в совокупности, если для любого набора $1 \le i_1, i_2 ... i_k \le n$

 $P(A_{i_1} \cap \ldots \cap A_{i_k}) = P(A_{i_1}) \cdot \cdot \cdot P(A_{i_k})$

Если события A_1 , A_2 ... A_n независимы в совокупности, то они попарно независимы, то есть любые два события A_i , A_j независимы.

Обратное неверно.

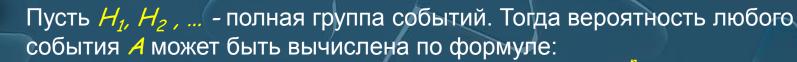
Формула полной вероятности

Полной группой событий или разбиением пространства Ω называют набор попарно несовместных событий $H_1, H_2...$, таких, что $P(H_i) > 0$ для всех i и $H_i = \Omega$.

События H_1 , H_2 ..., образующие полную группу событий, часто называют **гипотезами**. При подходящем выборе гипотез для произвольного события A могут быть сравнительно просто вычислены $P(A \mid H_i)$ (вероятность событию A произойти при выполнении «гипотезы» H_i) и собственно $P(H_i)$ (вероятность выполнения «гипотезы» H_i).

$$H_i \cap H_j = \emptyset, i \neq j$$

Формула полной вероятности



$$P(A) = \sum_{i=1}^{n} P(H_i) P(A|H_i)$$

Доказательство

По условию
$$H_i \cap H_j = \emptyset$$
, $i \neq j$ $A = AH_1 \cup AH_2 \cup AH_3...$

По аксиоме сложения
$$P(A) = P(AH_1 + AH_2 + ... + AH_n) = \sum_{i=1}^{n} P(AH_i)$$

По теореме умножения
$$P(AH_i) = P(H_i)P(A|H_i)$$

Тогда
$$P(A) = \sum_{i=1}^{n} P(H_i)P(A|H_i)$$

Пример

Имеется три партии деталей. Процент годных составляет соответственно 89 %, 92% и 97%. Общее количество деталей в партиях относится как 1:2:3. Определить вероятность случайного выбора непригодной детали из всех трех партий.

Решение

 H_1 , H_2 , H_3 события, заключающиеся в том, что деталь относится к первой, второй или третьей партии.

$$H_1 + H_2 + H_3 = \Omega$$
 $P(H_1) + P(H_2) + P(H_3) = P(\Omega) = 1$

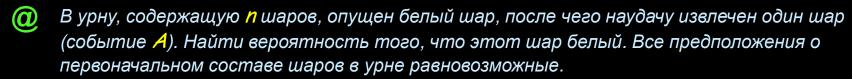
Общее количество деталей в партиях относится как 1:2:3

Следовательно:
$$P(H_1) = \frac{1}{6}$$
 $P(H_2) = \frac{1}{3}$ $P(H_3) = \frac{1}{2}$

Условные вероятности: $P(A|H_1) = 0.11$ $P(A|H_2) = 0.08$ $P(A|H_3) = 0.03$

$$P(A) = P(H_1)P(A|H_1) + P(H_2)P(A|H_2) + P(H_3)P(A|H_3)$$

$$P(A) = \frac{1}{6}0.11 + \frac{1}{3}0.08 + \frac{1}{2}0.03 = 0.06$$



Решение

Выдвигаем гипотезы H_1 , H_2 , H_{n+1} . H_1 – "нет белых шаров", H_2 – "один белый шар", H_3 – "два белых шара", , H_{n+1} – " в урне *n* белых шаров".

Вероятности гипотез: $P(H_1) = P(H_2) = \dots = P(H_{n+1}) = 1/(n+1)$.

Опущен белый шар!

Условные вероятности:
$$P(A|H_1) = \frac{1}{n+1}$$
, $P(A|H_2) = \frac{2}{n+1}$, ..., $P(A|H_n) = \frac{n}{n+1}$, $P(A|H_{n+1}) = \frac{n+1}{n+1}$

$$P(A) = \sum_{i=1}^{n+1} P(H_i) P(A|H_i) =$$

$$= \frac{1}{n+1} \left(\frac{1}{n+1} + \frac{2}{n+1} + \dots + \frac{n}{n+1} + \frac{n+1}{n+1} \right) = \frac{1}{n+1} \left(\frac{(n+1)(n+2)}{2(n+1)} \right) = \frac{n+2}{2(n+1)}$$

Апостериорная вероятность. Формула Байеса.

Важное значение в теории вероятностей имеет формула Байеса.

Формула Байеса
$$P(H_k|A) = \frac{P(H_k)P(A|H_k)}{\sum_{i=1}^{n} P(A|H_i)P(H_i)}$$

На основании коммутативности операции пересечения множеств $A \cap H = H \cap A$ можно записать: $P(A \cap H) = P(H \cap A)$ или

$$P(A)P(H|A) = P(H)P(A|H)$$

Это соотношение справедливо, если H есть также некоторое событие H_k из полной группы событий H_1 , H_2 ,

$$P(H_k|A) = \frac{P(H_k)P(A|H_k)}{P(A)}$$

Пример

Два стрелка выстрелили по одной мишени. Вероятность попадания в мишень первым стрелком — 1.0, вторым — 0.004. После выстрела в мишени обнаружена пробоина. Какова вероятность, что мишень поражена первым стрелком (вторым стрелком)?

Решение

А – событие "поражение мишени".

 H_1 - выбор первого стрелка $P(H_1) = 0.5$

 H_2 - выбор второго стрелка $P(H_2) = 0.5$

Условные вероятности: $P(A|H_1) = 1$ $P(A|H_2) = 0.004$

$$P(H_1|A) = \frac{0.5 \cdot 1.0}{0.5 \cdot 1.0 + 0.5 \cdot 0.004} = \frac{1}{1.004} = 0.996016$$
 $P(H_2|A) = 0.003984$

Апостериорная вероятность - a'posteriori - «после опыта»

